TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.3.8.13
P4 phospholipid (phosphatidyl serine)-transporting ATPase 8A1 (EC 3.6.3.1) (ATPase class I type 8A member 1) (Chromaffin granule ATPase II).  Also found in the liver canicular membrane (Chaubey et al. 2016). The 3-D strcutures of 6 distinct intermediates (2.6 - 3.3 Å resolution) of the complex of this protein with CDC50A (TC# 8.A.27.1.5) have been solved, revealing the transport cycle for lipid flipping (Hiraizumi et al. 2019). ATP-dependent phosphorylation induces a large rotational movement of the actuator domain around the phosphorylation site in the phosphorylation domain, accompanied by lateral shifts of the first and second TMSs, thereby allowing phosphatidylserine binding. The phospholipid head group passes through the hydrophilic cleft, while the acyl chain is exposed toward the lipid environment (Hiraizumi et al. 2019). The phospholipid binds to ATP8A1-CDC50 at an early stage when ATP8A1-CDC50 changes from E2P to E2Pi-PL state (Zhang et al. 2023). TMEM30A is an essential subunit of P4-ATPase phospholipid flippases (Li et al. 2023). Distinct domains in Ndc1 mediate its interaction with the Nup84 complex and the nuclear membrane (Amm et al. 2023). Ndc1 functions in NPC assembly at the fused inner and outer nuclear membranes. A direct interaction of Ndc1's transmembrane domain with Nup120 and Nup133, members of the pore membrane coating Y-complex. An amphipathic helix in Ndc1's C-terminal domain binds highly curved liposomes. Ndc1's amphipathic motif functionally interacts with related motifs in the C-terminus of the nucleoporins Nup53 and Nup59, important for pore membrane binding and interconnecting NPC modules. The essential function of Ndc1 can be suppressed by deleting the amphipathic helix from Nup53 (Amm et al. 2023). It is a possible drug target for pheochromocytomas and paragangliomas (PPGLs), rare neuroendocrine tumors (Vit et al. 2023).

Accession Number:Q9Y2Q0
Protein Name:Probable phospholipid-transporting ATPase IA
Length:1164
Molecular Weight:131369.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:7
Location1 / Topology2 / Orientation3: Cytoplasmic vesicle1 / Multi-pass membrane protein2
Substrate phospholipid

Cross database links:

Entrez Gene ID: 10396   
Pfam: PF00122   
KEGG: hsa:10396   

Gene Ontology

GO:0042584 C:chromaffin granule membrane
GO:0005783 C:endoplasmic reticulum
GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0015247 F:aminophospholipid transporter activity
GO:0005524 F:ATP binding
GO:0015662 F:ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism
GO:0019829 F:cation-transporting ATPase activity
GO:0000287 F:magnesium ion binding
GO:0004012 F:phospholipid-translocating ATPase activity
GO:0045332 P:phospholipid translocation

References (5)

[1] “Cloning, expression, and chromosomal mapping of a human ATPase II gene, member of the third subfamily of P-type ATPases and orthologous to the presumed bovine and murine aminophospholipid translocase.”  Mouro I.et.al.   10198212
[2] “Generation and annotation of the DNA sequences of human chromosomes 2 and 4.”  Hillier L.W.et.al.   15815621
[3] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[4] “Phosphoproteome of resting human platelets.”  Zahedi R.P.et.al.   18088087
[5] “ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner.”  Takatsu H.et.al.   21914794
Structure:
6K7G   6K7H   6K7I   6K7J   6K7K   6K7L   6K7M   6K7N     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MPTMRRTVSE IRSRAEGYEK TDDVSEKTSL ADQEEVRTIF INQPQLTKFC NNHVSTAKYN 
61:	IITFLPRFLY SQFRRAANSF FLFIALLQQI PDVSPTGRYT TLVPLLFILA VAAIKEIIED 
121:	IKRHKADNAV NKKQTQVLRN GAWEIVHWEK VAVGEIVKVT NGEHLPADLI SLSSSEPQAM 
181:	CYIETSNLDG ETNLKIRQGL PATSDIKDVD SLMRISGRIE CESPNRHLYD FVGNIRLDGH 
241:	GTVPLGADQI LLRGAQLRNT QWVHGIVVYT GHDTKLMQNS TSPPLKLSNV ERITNVQILI 
301:	LFCILIAMSL VCSVGSAIWN RRHSGKDWYL NLNYGGASNF GLNFLTFIIL FNNLIPISLL 
361:	VTLEVVKFTQ AYFINWDLDM HYEPTDTAAM ARTSNLNEEL GQVKYIFSDK TGTLTCNVMQ 
421:	FKKCTIAGVA YGHVPEPEDY GCSPDEWQNS QFGDEKTFSD SSLLENLQNN HPTAPIICEF 
481:	LTMMAVCHTA VPEREGDKII YQAASPDEGA LVRAAKQLNF VFTGRTPDSV IIDSLGQEER 
541:	YELLNVLEFT SARKRMSVIV RTPSGKLRLY CKGADTVIYD RLAETSKYKE ITLKHLEQFA 
601:	TEGLRTLCFA VAEISESDFQ EWRAVYQRAS TSVQNRLLKL EESYELIEKN LQLLGATAIE 
661:	DKLQDQVPET IETLMKADIK IWILTGDKQE TAINIGHSCK LLKKNMGMIV INEGSLDGTR 
721:	ETLSRHCTTL GDALRKENDF ALIIDGKTLK YALTFGVRQY FLDLALSCKA VICCRVSPLQ 
781:	KSEVVEMVKK QVKVVTLAIG DGANDVSMIQ TAHVGVGISG NEGLQAANSS DYSIAQFKYL 
841:	KNLLMIHGAW NYNRVSKCIL YCFYKNIVLY IIEIWFAFVN GFSGQILFER WCIGLYNVMF 
901:	TAMPPLTLGI FERSCRKENM LKYPELYKTS QNALDFNTKV FWVHCLNGLF HSVILFWFPL 
961:	KALQYGTAFG NGKTSDYLLL GNFVYTFVVI TVCLKAGLET SYWTWFSHIA IWGSIALWVV 
1021:	FFGIYSSLWP AIPMAPDMSG EAAMLFSSGV FWMGLLFIPV ASLLLDVVYK VIKRTAFKTL 
1081:	VDEVQELEAK SQDPGAVVLG KSLTERAQLL KNVFKKNHVN LYRSESLQQN LLHGYAFSQD 
1141:	ENGIVSQSEV IRAYDTTKQR PDEW