1.B.5 The Pseudomonas OprP Porin (POP) Family Two Pseudomonas outer membrane porin proteins, both functionally characterized, comprise the POP family. These porins are anion-selective and transport either phosphate (OprP) or pyrophosphate (OprO) as their physiological substrate.
|
This family belongs to the Outer Membrane Pore-forming Protein I (OMPP-I) Superfamily .
|
References: |
Benz, R., C. Egli, and R.E. Hancock. (1993). Anion transport through the phosphate-specific OprP-channel of the Pseudomonas aeruginosa outer membrane: effects of phosphate, di- and tribasic anions and of negatively-charged lipids. Biochim. Biophys. Acta. 1149: 224-230.
|
Citak, F., I. Ghai, F. Rosenkötter, L. Benier, M. Winterhalter, and R. Wagner. (2018). Probing transport of fosfomycin through substrate specific OprO and OprP from Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 495: 1454-1460.
|
Hancock, R.E., C. Egli, R. Benz, and R.J. Siehnel. (1992). Overexpression in Escherichia coli and functional analysis of a novel PPi-selective porin, oprO, from Pseudomonas aeruginosa. J. Bacteriol. 174: 471-476.
|
Hancock, R.E.W., R. Siehnel and N. Martin (1990). Outer membrane proteins of Pseudomonas. Mol. Microbiol. 4: 1069-1075.
|
Jeanteur, D., J.H. Lakey and F. Pattus (1991). The bacterial porin superfamily: sequence alignment and structure prediction. Mol. Microbiol. 5: 2153-2164.
|
Jeanteur, D., J.H. Lakey and F. Pattus (1994). The porin superfamily: diversity and common features. In: Bacterial Cell Wall. Edited by Ghuysen, J.M., Hakenbeck, R. Elsevier, Amsterdam, pp. 363-380.
|
Lapierre, J. and J.S. Hub. (2023). Converging PMF Calculations of Antibiotic Permeation across an Outer Membrane Porin with Subkilocalorie per Mole Accuracy. J Chem Inf Model 63: 5319-5330.
|
Modi, N., I. Bárcena-Uribarri, M. Bains, R. Benz, R.E. Hancock, and U. Kleinekathöfer. (2013). Role of the central arginine R133 toward the ion selectivity of the phosphate specific channel OprP: effects of charge and solvation. Biochemistry 52: 5522-5532.
|
Modi, N., I. Bárcena-Uribarri, M. Bains, R. Benz, R.E. Hancock, and U. Kleinekathöfer. (2015). Tuning the affinity of anion binding sites in porin channels with negatively charged residues: molecular details for OprP. ACS Chem Biol 10: 441-451.
|
Modi, N., S. Ganguly, I. Bárcena-Uribarri, R. Benz, B. van den Berg, and U. Kleinekathöfer. (2015). Structure, Dynamics, and Substrate Specificity of the OprO Porin from Pseudomonas aeruginosa. Biophys. J. 109: 1429-1438.
|
Nikaido, H. (1992). Porins and specific channels of bacterial outer membranes. Mol. Microbiol. 6: 435-442.
|
Niramitranon, J., M.S. Sansom, and P. Pongprayoon. (2016). Why do the outer membrane proteins OmpF from E. coli and OprP from P. aeruginosa prefer trimer? Simulation studies. J Mol Graph Model 65: 1-7. [Epub: Ahead of Print]
|
Piselli, C., V.K. Golla, R. Benz, and U. Kleinekathöfer. (2023). Importance of the lysine cluster in the translocation of anions through the pyrophosphate specific channel OprO. Biochim. Biophys. Acta. Biomembr 1865: 184086.
|
Rehm, B.H., G. Boheim, J. Tommassen, and U.K. Winkler. (1994). Overexpression of algE in Escherichia coli: subcellular localization, purification, and ion channel properties. J. Bacteriol. 176: 5639-5647.
|
Schulz, G.E. (1996). Porins: general to specific, native to engineered passive pores. Curr. Opin. Struc. Biol. 6: 485-490.
|
Siehnel, R., N.L. Martin and R.E.W. Hancock (1990). Sequence and relatedness in other bacteria of the Pseudomonas aeruginosa oprP gene coding for the phosphate-specific porin P. Mol. Microbiol. 4: 831-838.
|
Examples: |
TC# | Name | Organismal Type | Example |
1.B.5.1.1 | Outer membrane phosphate-selective porin OprP (PorP) of 440 aas. Binds and transports a variety of mono, di- and trivalent anions (Benz et al. 1993). An arginine in the pore determines the anion selectivity (Modi et al. 2013). Residues involved in anion affinity and a preference for Pi versus P2 have been identified (Modi et al. 2015). Both monomeric and trimeric OprP are belived to maintain
their anion selectivity (Niramitranon et al. 2016). The phosphonic-acid antibiotic fosfomycin is highly permeable through the OprO and OprP channels (Citak et al. 2018). | Proteobacteria | OprP of Pseudomonas aeruginosa |
|
1.B.5.1.10 | Putative polyphosphate porin, OprO | Planctomycetes | OprO of Rhodopirellula baltica |
|
1.B.5.1.11 | Phosphate-selective porin OmpO/P of 412 aas | Verrucomicrobia | OmpO/P of Verrucomicrobiae bacterium |
|
1.B.5.1.12 | Anion-selective porin O/P | Bacteroidetes | Porin O/P of Salinibacter ruber |
|
1.B.5.1.13 | Anion-selective porin O/P | Bacteroidetes | Porin O/P of Salinibacter ruber |
|
1.B.5.1.14 | Porin of 627 aas with an N-terminal domain of about 140 aas that is recognized by CDD as a tumor supressor myostatin domain (Pfam 13868). | Proteobacteria | Porin fusion protein of Gluconobacter morbifer |
|
1.B.5.1.15 | Phosphate/pyrophosphate-specific porin of 625 aas, OprP/OprO/OprD. | Proteobacteria | OprD/O/P of Methylophaga aminisulfidivorans |
|
1.B.5.1.2 | Pyrophosphate-selective porin OprO (Hancock et al. 1992). The residue basis for the selectivity of P2 over Pi has been determined and involves two residues (Modi et al. 2015). The phosphonic-acid antibiotic fosfomycin is highly permeable through the OprO and OprP channels (Citak et al. 2018). Fosfidomycin is also transported (Lapierre and Hub 2023). In OprO, there is a lysine cluster that is responsible for anion selectivity (Piselli et al. 2023). | Bacteria | OprO of Pseudomonas aeruginosa |
|
1.B.5.1.3 | Outer membrane porin, OprP | Planctomycetes | OprP of Rhodopirellula baltica |
|
1.B.5.1.4 | Outer membrane putative phosphate-specific porin, OprP | Proteobacteria | OprP of Pseudoalteromonas atlantica |
|
1.B.5.1.5 | Putative outer membrane porin | Bacteroidetes | OMP of Capnocytophaga ochracea |
|
1.B.5.1.6 | Putative outer membrane porin | Bacteroidetes | OMP of Bacteroides helcogenes |
|
1.B.5.1.7 | Putative phosphate-specific porin | Planctomycetes | OMP of Singulisphaera acidiphila |
|
1.B.5.1.8 | Putative porin O | Verrucomicrobia | Porin O of Coraliomargarita akajimensis |
|
1.B.5.1.9 | Porin O | Proteobacteria | Porin O of Shewanella violacea |
|
Examples: |
TC# | Name | Organismal Type | Example |
1.B.5.2.1 | Putative porin | Proteobacteria | Putative porin of Sideroxydans lithotrophicus |
|
1.B.5.2.2 | Putative porin | Aquificae | Porin of Thermocrinis albus |
|