2.A.20 The Inorganic Phosphate Transporter (PiT) Family
The proteins of the PiT family are derived from Gram-negative and Gram-positive bacteria, archaea, and eukaryotes. Functionally-characterized members of the family appear to catalyze inorganic phosphate (Pi) or inorganic sulfate uptake either by H+ or Na+ symport. Both PitA and PitB of E. coli probably catalyze metal ion·phosphate:H+ symport, where Mg2+, Ca2+ or Zn2+ (and probably other divalent cations) can complex Pi. The mammalian proteins have been reported to function as viral receptors, but they undoubtedly function as transport proteins as well. For numerous gammaretroviruses, such as the gibbon ape leukemia virus, woolly monkey virus, feline
leukemia virus subgroup B, feline leukemia virus subgroup T, and 10A1 murine leukemia virus, this
receptor is the human type III sodium-dependent inorganic phosphate transporter, SLC20A1, also
known as PiT1 (Farrell et al. 2009). Members of this family have the PiT fold (Ferrada and Superti-Furga 2022).
The molecular sizes of Pit family members are reported to vary from 354 to 681 residues (10-12 TMSs) with the mammalian and Plasmodium proteins exhibiting the largest sizes. The sulfate permease of B. subtilis, CysP, is of 354 residues with 11 putative TMSs (Mansilla and de Mendoza, 2000).
Phylogenetic grouping of the phosphate transport proteins generally correlates with organismal phylogeny. Thus the fungal, plant, animal and archaeal proteins each cluster separately (Saier et al., 1999). However, the tree exhibits two clusters of bacterial phosphate transport proteins. One bacterial cluster is distant from the eukaryotic proteins while the other cluster is close to the plant proteins. Both clusters include proteins from Gram-negative and Gram-positive bacteria. The sulfate permease, CysP, is distantly related to the phosphate permeases.
Members of the PiT family arose by a tandem internal gene duplication event. Surprisingly, TopPred predicts a 12 TMS topology for the yeast Pho89 protein, but the homologous regions are not predicted to show similar topological features. Thus, for example TMS 1 is homologous to TMS 9, and TMS 4 is predicted to correspond to the loop between TMSs 11 and 12 (Persson et al., 1998, 1999).
The malaria parasite, Plasmodium falciparum, grows within its host erythrocyte and induces an increase in the permeability of the erythrocyte membrane to a range of solutes including Na+ and K+. This results in a progressive increase in the concentration of Na+ in the erythrocyte cytosol. The parasite cytosol has a relatively low Na+ concentration, generating a large inward Na+ gradient across the parasite plasma membrane. Saliba et al. (2006) showed that the parasite exploits the Na+ electrochemical gradient to energize the uptake of inorganic phosphate (Pi) with a stoichiometry of 2Na+:1Pi and with an apparent preference for the monovalent over the divalent form of Pi (see TC #2.A.20.2.5).
The generalized transport reactions possibly catalyzed by members of the PiT family are:
(1) HPO42- (out) + [nH+ or Na+] (out) → HPO42- (in) + [nH+ or Na+] (in)
(2) Me2+ · HPO42- (out) + nH+ (out) → Me2+ · HPO42- (in) + nH+ (in)
(3) SO42- (out) + nH+ (out) → SO42- (in) + nH+ (in)
|
References: |
Aguilar-Barajas E., Diaz-Perez C., Ramirez-Diaz MI., Riveros-Rosas H. and Cervantes C. (2011). Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals. 24(4):687-707.
|
Ahn, J., J. Hong, M. Park, H. Lee, E. Lee, C. Kim, J. Lee, E.S. Choi, J.K. Jung, and H. Lee. (2009). Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter. Appl. Environ. Microbiol. 75: 3528-3534.
|
Asady, B., C.F. Dick, K. Ehrenman, T. Sahu, J.D. Romano, and I. Coppens. (2020). A single Na+-Pi cotransporter in Toxoplasma plays key roles in phosphate import and control of parasite osmoregulation. PLoS Pathog 16: e1009067. [Epub: Ahead of Print]
|
Beard, S.J., R. Hashim, G. Wu, M.R. Binet, M.N. Hughes, and R.K. Poole. (2000). Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol. Lett. 184: 231-235.
|
Borghese, R., L. Canducci, F. Musiani, M. Cappelletti, S. Ciurli, R.J. Turner, and D. Zannoni. (2016). On the role of a specific insert in acetate permeases (ActP) for tellurite uptake in bacteria: Functional and structural studies. J Inorg Biochem 163: 103-109.
|
Bøttger, P. and L. Pedersen. (2011). Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC Biochem 12: 21.
|
Bøttger, P., S.E. Hede, M. Grunnet, B. Høyer, D.A. Klaerke, and L. Pedersen. (2006). Characterization of transport mechanisms and determinants critical for Na+-dependent Pi symport of the PiT family paralogs human PiT1 and PiT2. Am. J. Physiol. Cell Physiol. 291: C1377-1387.
|
Cui, J., X. Yang, J. Yang, R. Jia, Y. Feng, and B. Shen. (2022). A Coccidia-Specific Phosphate Transporter Is Essential for the Growth of Toxoplasma gondii Parasites. Microbiol Spectr e0218622. [Epub: Ahead of Print]
|
Daram, P., S. Brunner, C. Rausch, C. Steiner, N. Amrhein and M. Bucher (1999). Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11: 2153-2166.
|
Elías, A.O., M.J. Abarca, R.A. Montes, T.G. Chasteen, J.M. Pérez-Donoso, and C.C. Vásquez. (2012). Tellurite enters Escherichia coli mainly through the PitA phosphate transporter. Microbiologyopen 1: 259-267.
|
Farrell, K.B., G.E. Tusnady, and M.V. Eiden. (2009). New structural arrangement of the extracellular regions of the phosphate transporter SLC20A1, the receptor for gibbon ape leukemia virus. J. Biol. Chem. 284: 29979-29987.
|
Feng, H., X. Li, D. Sun, Y. Chen, G. Xu, Y. Cao, and L.Q. Ma. (2021). Expressing Phosphate Transporter PvPht2;1 Enhances P Transport to the Chloroplasts and Increases Arsenic Tolerance in. Environ Sci Technol. [Epub: Ahead of Print]
|
Ferrada, E. and G. Superti-Furga. (2022). A structure and evolutionary-based classification of solute carriers. iScience 25: 105096.
|
Harris, R.M., D.C. Webb, S.M. Howitt and G.B. Cox (2001). Characterization of PitA and PitB from Escherichia coli. J. Bacteriol. 183: 5008-5014.
|
Jackson, R.J., M.R. Binet, L.J. Lee, R. Ma, A.I. Graham, C.W. McLeod, and R.K. Poole. (2008). Expression of the PitA phosphate/metal transporter of Escherichia coli is responsive to zinc and inorganic phosphate levels. FEMS Microbiol. Lett. 289: 219-224.
|
Kim, S., T.D. Lieberman, and R. Kishony. (2014). Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl. Acad. Sci. USA 111: 14494-14499.
|
Li, J., W. Dong, Z. Li, H. Wang, H. Gao, and Y. Zhang. (2019). Impact of SLC20A1 on the Wnt/β‑catenin signaling pathway in somatotroph adenomas. Mol Med Rep. [Epub: Ahead of Print]
|
Li, M., N. Yang, X. Li, N. Duan, S. Qin, M. Wang, Y. Zhou, Y. Jin, W. Wu, S. Jin, and Z. Cheng. (2024). Host Cells Upregulate Phosphate Transporter PIT1 to Inhibit Intracellular Growth. Int J Mol Sci 25:.
|
Li, S.H., B.B. Xia, C. Zhang, J. Cao, and L.H. Bai. (2012). Cloning and characterization of a phosphate transporter gene in Dunaliella salina. J Basic Microbiol 52: 429-436.
|
Li, Y., X. Lin, M. Zhu, J. Li, Z. Yuan, and H. Xu. (2020). Whole‑exome sequencing identifies a novel mutation of SLC20A2 (c.C1849T) as a possible cause of hereditary multiple exostoses in a Chinese family. Mol Med Rep 22: 2469-2477.
|
Maheshwari, U., J.M. Mateos, U. Weber-Stadlbauer, R. Ni, V. Tamatey, S. Sridhar, A. Restrepo, P.A. de Jong, S.F. Huang, J. Schaffenrath, S.A. Stifter, F. Szeri, M. Greter, H.L. Koek, and A. Keller. (2023). Inorganic phosphate exporter heterozygosity in mice leads to brain vascular calcification, microangiopathy, and microgliosis. Brain Pathol. [Epub: Ahead of Print]
|
Mann, B.J., B.J. Bowman, J. Grotelueschen and R.L. Metzenberg (1989). Nucleotide sequence of pho-4, encoding a phosphate-repressible phosphate permease of Neurospora crassa. Gene 83: 281-289.
|
Mansilla, M.C. and D. de Mendoza. (2000). The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146(Pt4): 815-821.
|
Martinez, P. and B.L. Persson (1998). Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol. Gen. Genet. 258: 628-638.
|
McCarthy, S., C. Ai, G. Wheaton, R. Tevatia, V. Eckrich, R. Kelly, and P. Blum. (2014). Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. J. Bacteriol. 196: 3562-3570.
|
Monfrini, E., F. Arienti, P. Rinchetti, F. Lotti, and G.M. Riboldi. (2023). Brain Calcifications: Genetic, Molecular, and Clinical Aspects. Int J Mol Sci 24:.
|
Młodzińska, E. and M. Zboińska. (2016). Phosphate Uptake and Allocation - A Closer Look at Arabidopsis thaliana L. and Oryza sativa L. Front Plant Sci 7: 1198.
|
Naureen, Z., A. Sham, H. Al Ashram, S.A. Gilani, S. Al Gheilani, F. Mabood, J. Hussain, A. Al Harrasi, and S.F. AbuQamar. (2018). Effect of phosphate nutrition on growth, physiology and phosphate transporter expression of cucumber seedlings. Plant Physiol. Biochem 127: 211-222. [Epub: Ahead of Print]
|
Persson, B.L., A. Berhe, U. Fristedt, P. Martinez, J. Pattison, J. Petersson and R. Weinander (1998). Phosphate permeases of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1365: 23-30.
|
Persson, B.L., J. Petersson, U. Fristedt, R. Weinander, A. Berhe and J. Pattison (1999). Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim. Biophys. Acta 1422: 255-272.
|
Ravera, S., H. Murer, and I.C. Forster. (2013). An Externally Accessible Linker Region in the Sodium-Coupled Phosphate Transporter PiT-1 (SLC20A1) is Important for Transport Function. Cell Physiol Biochem 32: 187-199.
|
Ravera, S., L.V. Virkki, H. Murer, and I.C. Forster. (2007). Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am. J. Physiol. Cell Physiol. 293: C606-620.
|
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi and G.B. Young (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56.
|
Saliba, K.J., R.E. Martin, A. Broer, R.I. Henry, C.S. McCarthy, M.J. Downie, R.J. Allen, K.A. Mullin, G.I. McFadden, S. Broer, and K. Kirk. (2006). Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature 443: 582-585.
|
Santos-Beneit, F., A. Rodríguez-García, E. Franco-Domínguez, and J.F. Martín. (2008). Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology 154: 2356-2370.
|
Sekine, S.I., K. Nishii, T. Masaka, H. Kurita, M. Inden, and I. Hozumi. (2019). SLC20A2 variants cause dysfunctional phosphate transport activity in endothelial cells induced from Idiopathic Basal Ganglia Calcification patients-derived iPSCs. Biochem. Biophys. Res. Commun. 510: 303-308.
|
Versaw, W.K. and R.L. Metzenberg (1995). Repressible cation-phosphate symporters in Neurospora crassa. Proc. Natl. Acad. Sci. USA 92: 3884-3887.
|
Wallingford MC. and Giachelli CM. (2014). Loss of PiT-1 results in abnormal endocytosis in the yolk sac visceral endoderm. Mech Dev. 133:189-202.
|
Wang, C., Y. Li, L. Shi, J. Ren, M. Patti, T. Wang, J.R. de Oliveira, M.J. Sobrido, B. Quintáns, M. Baquero, X. Cui, X.Y. Zhang, L. Wang, H. Xu, J. Wang, J. Yao, X. Dai, J. Liu, L. Zhang, H. Ma, Y. Gao, X. Ma, S. Feng, M. Liu, Q.K. Wang, I.C. Forster, X. Zhang, and J.Y. Liu. (2012). Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat. Genet. 44: 254-256.
|
Xiao, P., Y. Zhu, H. Xu, J. Li, A. Tao, H. Wang, D. Cheng, X. Dou, and L. Guo. (2024). CTGF regulates mineralization in human mature chondrocyte by controlling Pit-1 and modulating ANK via the BMP/Smad signalling. Cytokine 174: 156460.
|
Examples: |
TC# | Name | Organismal Type | Example |
2.A.20.1.1 | Low affinity Pi or phosphate-zinc complex uptake transporter #1, PitA (Km=2 μM) (Me·Pi:H+ symporter) (Beard et al. 2000; Jackson et al. 2008). Also transports tellurite (TeO32-) slowly (Elías et al. 2012; Borghese et al. 2016). | Bacteria | PitA of E. coli (P0AFJ7) |
|
2.A.20.1.2 | Low affinity Pi transporter #2, PitB (Km=30 μM) PitB, like PitA is also a Me·Pi:H+ symporter (Borghese et al. 2016) | Bacteria | PitB of E. coli |
|
2.A.20.1.3 |
Probable low-affinity inorganic phosphate transporter, Pit | Actinobacteria | Pit of Mycobacterium bovis |
|
2.A.20.1.4 | Probable low-affinity inorganic phosphate transporter | Bacteria | Pit of Rhizobium meliloti |
|
2.A.20.1.5 | Putative low affinity Pi transporter PitH1, Sco4138 (Santos-Beneit et al. 2008). | Actinobacteria | PitH1 of Streptomyces coelicolor. |
|
2.A.20.1.6 | Putative low affinity Pi transporter PitH2, Sco1845 (Santos-Beneit et al., 2008). | Actinobacteria | PitH2 of Streptomyces coelicolor. |
|
2.A.20.1.7 | Low affinity inorganic phosphate uptake porter of 335 aas, PitA (Kim et al. 2014; Mechler L, ... Bertram R, personal communication). | Firmictues | PitA of Staphylococcus aureus |
|
Examples: |
TC# | Name | Organismal Type | Example |
2.A.20.2.1 | Pi-repressible Pi:Na+ symporter | Eukaryotes | Pho4 of Neurospora crassa |
|
2.A.20.2.10 | Phosphate:sodium symporter of 576 aas, Pho89 (Ahn et al. 2009). | Fungi | Pho89 of Komagataella pastoris (Yeast) (Pichia pastoris) |
|
2.A.20.2.11 | Phosphate transporter of 601 aas and 12 TMSs. Pho4. | Euglenozoa | Pho4 of Trypanosoma cruzi |
|
2.A.20.2.12 | Putative phosphate:sodium symporter of 752 aas and 12 - 14 TMSs. | | PNaS family member of Lutibacter sp. |
|
2.A.20.2.13 | Putative sodium/phosphate symporter of 534 aas and 12 TMSs. | | Na+:Phosphate symporter of Emiliania huxleyi virus 84 |
|
2.A.20.2.14 | Phosphate uptake transporter of 869 aas and 10 TMSs, 6 N-terminal and 4 C-terminal. Toxoplasma expresses one Pi transporter harboring two PHO4 binding domains (N- and C-terminal) that typify the PiT Family. This transporter named TgPiT, localizes to the plasma membrane, the inward buds of the endosomal organelles termed VAC, and many cytoplasmic vesicles (Asady et al. 2020). It catalyzes Pi:Na+ = 1:2 iselectrogenically. Upon Pi limitation in the medium, TgPiT is more abundant at the plasma membrane. ΔTgPiT parasites accumulate 4-times more acidocalcisomes, storage organelles for phosphate, and exhibit many traits that differ from the wild type organims including poor virulence (Asady et al. 2020). Either PgPiT or PT2 is essential for growth (Cui et al. 2022). | | TgPiT of Toxoplasma gondii |
|
2.A.20.2.2 | High affinity Pi:Na+ symporter | Eukaryotes | Pho89 (YBR296c) of Saccharomyces cerevisiae |
|
2.A.20.2.3 | Gibbon ape leukemia virus receptor 2/sodium-dependent phosphate uptake transporter, Pi:Na+ symporter, PiT2, PiT-2, GLVR2, SLC20A2. Mapping of the minimal transporting unit suggested a structure universal to all PiT-related proteins (Battger and Pedersen, 2011).The protein can transport Pi in the absence of Na+, and mutations allow Na+ transport in the absence of Pi. Transmembrane amino acids E(55) and E(575) appear to be responsible for linking Pi import to Na+symport (Bøttger et al. 2006). SLC20A2 variants cause the loss of Pi transport activity in mammalian cells (Sekine et al. 2019). Mutation of SLC20A2 seems to cause hereditary multiple exostoses (Li et al. 2020). It has been associated with Primary Familial Brain Calcification (PFBC) (Wang et al. 2012; Monfrini et al. 2023). Inorganic phosphate exporter heterozygosity in mice leads to brain vascular calcification, microangiopathy, and microgliosis (Maheshwari et al. 2023).
| Animals | SLC20A2 of Homo sapiens |
|
2.A.20.2.4 | Low affinity housekeeping Pi transporter, PHT2, Pht2;1, Pht2,1, PT2-1 of 587 aas (Młodzińska and Zboińska 2016). The cucumber (Cucumis sativus) ortholog is involved in cucumber growth and metabolism; PT2-1 transcript levels in roots were high when grown in low (limiting) Pi-containing media, but low when grown in high Pi media (Naureen et al. 2018). Expressing Pht2;1 of Pteris vittata enhances phosphate transport in chloroplasts and increases arsenic tolerance in Arabidopsis thaliana (Feng et al. 2021). | Plants | Pht2;1 of Arabidopsis thaliana |
|
2.A.20.2.5 | The Pi:Na+ symporter, PfPit (669 aas; Saliba et al., 2006) | Malaria parasite | PfPit of Plasmodium falciparum (Q7YUD6) |
|
2.A.20.2.6 | The Pi:(Na+)2 symporter, GLVR1, PiT1 or PiT-1 (Ravera et al., 2007). Mutating the conserved loop region between TMSs 2 and 3 alterred the binding properties of the transporter for Na+/Li+ and phosphate/arenate (Ravera et al. 2013). | Animals | Pit1 of Xenopus tropicalis (Q5BL44) |
|
2.A.20.2.7 | Na+-dependent phosphate transporter 1 (PiT-1). Gibbon ape leukemia virus receptor 1 (GLVR-1), Slc20A1 (KM=24μM). The protein has an experimentally tested 12 TMS topology (Farrell et al. 2009). A knock-out mutation of the mouse orthologue results in abnormal endocytosis in the yolk sac visceral endoderm and embyonic death at the 12.5 day stage (Wallingford and Giachelli 2014). PiT1 levels are elevanted in somatotroph adenomas and are positively associated with tumor size, invasive behavior and tumor recurrence in somatotroph adenomas. It may be associated with the activation of the Wnt/betacatenin signaling pathway (Li et al. 2019). The tails are important regulatory domains required for the endocytosis of the Rgt2 and Snf3 glucose sensing receptors triggered by different cellular stimuli (Xiao et al. 2024). Ehrlichia chaffeensis infects and proliferates inside monocytes and macrophages and causes human monocytic ehrlichiosis (HME), an
emerging life-threatening tick-borne zoonosis. After internalization, E. chaffeensis resides in specialized membrane-bound inclusions, E. chaffeensis-containing vesicles (ECVs), to evade host cell innate immune responses and obtain nutrients (Li et al. 2024). Host cells recognize E. chaffeensis Ech_1067, a penicillin-binding
protein, and then upregulate the expression of PIT1, which transports phosphate from ECVs to the cytosol
to inhibit bacterial growth. | Animals | SLC20A1 of Homo sapiens |
|
2.A.20.2.8 | Na+:Pi transporter, SPT1 (Li et al., 2011) | Plants | SPT1 of Dunaliella viridis (A7U4W2) |
|
2.A.20.2.9 | Putative phosphate permease HP_1491 | Bacteria | HP_1491 of Helicobacter pylori |
|
Examples: |
TC# | Name | Organismal Type | Example |
2.A.20.3.1 | Putative Na+-dependent Pi transporter | Archaea | Npt of Methanococcus jannaschii |
|
2.A.20.3.2 | Low affinity high velocity phosphate transporter, PitA if 320 aas (McCarthy et al. 2014). | Crenarchaota | PitA of Metallosphaera cuprina |
|
2.A.20.3.3 | Low affinity phosphate transporter, PitA of 328 aas | Crenarchaota | PitA of Sulfolobus solfataricus |
|
2.A.20.3.4 | Low affinity phosphate carrier, PitA of 309 aas. | Euryarchaota | PitA of Archaeoglobus profundus |
|
Examples: |
TC# | Name | Organismal Type | Example |
2.A.20.4.1 | Sulfate:H+ symporter, CysP (Aguilar-Barajas et al., 2011; Mansilla and de Mendoza, 2000) | Bacteria | CysP (YlnA) of Bacillus subtilis |
|