TCDB is operated by the Saier Lab Bioinformatics Group

1.A.1 The Voltage-gated Ion Channel (VIC) Superfamily

Proteins of the VIC family are ion-selective channel proteins found in a wide range of bacteria, archaea, eukaryotes and viruses. They are often homo- or heterooligomeric structures with several dissimilar subunits (e.g., α1-α2-δ-β Ca2+ channels, αβ1β2 Na+ channels or (α)4-β K+ channels), but the channel and the primary receptor is usually associated with the α (or α1) subunit. Functionally characterized members are specific for K+, Na+ or Ca2+. The K+ channels usually consist of homotetrameric structures with each α-subunit possessing six transmembrane spanners (TMSs). Many voltage-sensitive K+ channels function with β-subunits that modify K+ channel gating. These nonintegral β-subunits are oxidoreductases that coassemble with the tetrameric α-subunits in the endoplasmic reticulum and remain tightly adherent to the α-subunit tetramer. The high resolution β-subunit structure is available (Gulbis et al., 1999). Non-homologous β-subunits of Na+ and Ca2+ channels function in regulation (Hanlon and Wallace, 2002).  Voltage-gated Ca2+ (Cav) channels have 4 subunits which have all been examined phylogenetically from evolutionary standpoints (Moran and Zakon 2014).  Members of the VIC (1.A.1), RIR-CaC (2.A.3) and TRP-CC (1.A.4) Families have similar transmembrane domain structures, but very different cytosolic doman structures (Mio et al. 2008).  How membrane proteins sense voltage (the membrane potential) has been reviewed (Bezanilla 2008). The involvement of glycosylation in the function and expression of these channels has also been reviewed (Lazniewska and Weiss 2017).  Ion channel disfunction in semen may account for male infertility (Carkci et al. 2017). The spatial expression of K+ channels in mammalian cells has been reviewed (Capera et al. 2019). Four types of K+ channels are expressed in macrophages: voltage-gated K+ channel, calcium-activated K+ channel, inwardly rectifying K+ channel and two-pore domain K+ channel (Man et al. 2023). L-type calcium channels and neuropsychiatric diseases: genetic risk variant-associated genomic regulation and their impact on brain development have been reviewed (Baker et al. 2023). Ion channel regulation mediated by functional nanoparticles have also been reviewed (Huang et al. 2023). A potassium channel antagonist has promising effects on obstructive sleep apnea (OSA) (Genta and Taranto-Montemurro 2023).  Small molecules targeting transmembrane receptors and ion channels have been reviewed (Vitale et al. 2023). A new computational method has been introduced to calculate the unbiased current source density distribution on a single neuron with known morphology (Meszéna et al. 2023). Ion channels function in several gastrointestinal disorders (Maqoud et al. 2023). Mechanosensitive channel genes are expressed in human hearts, e.g., CHRNE in the atria, TRPV4 in the right atrium, CACNA1B and KCNMB1 in the left atrium, as well as KCNK2 and KCNJ2 in ventricles (Darkow et al. 2023).  SK(C)(a)- and Kv1-type potassium channels appear to play roles in tumor development (Dupuy et al. 2023).

Large-conductance Ca2+- and voltage-gated K+ channels form and break interactions with membrane lipids during each gating cycle (Tian et al. 2019). Pulsed electric fields can create pores in the voltage sensors of voltage-gated ion channels (Rems et al. 2020). Curcumin, a multi-ion channel blocker preferentially blocks late Na+ current and prevents I/R-induced arrhythmias (Song et al. 2020). The contribution of ion channels to multiple stages of tumorigenesis has been reviewed (Fan and Huang 2020). Structures of K+ channels have revealed aspects of ion selectivity, conduction, channel gating, and modulation (Jiang 2021). Sensors, mediators and targets important for potassium homeostasis have been reviewed (McDonough and Fenton 2022). The 70-year search for the voltage sensing mechanism of ion channels has been reviewed (Catacuzzeno and Franciolini 2022). It has been argued that the pore domains of voltage-gated ion channels are autonomously folded units (Arrigoni et al. 2022). Ion channel gene variants are central in neuropathic pain of different etiologies and provide promising gene candidates for potential targets for treatment of pain (Ślęczkowska et al. 2022). The potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication have been reviewed (Russell et al. 2022). Calcium signaling provides a therapeutic target to overcome resistance to therapies in cancer (Romito et al. 2022). Beta subunits of voltage-gated calcium channels in cardiovascular diseases have been reviewed (Loh et al. 2023). Twenty K+ channels are encoded within the genome of Leishmania doonovani (Paul et al. 2023). The potential of the capillary zone electrophoresis (CZE)-tandem MS (MS/MS) method for the top-down proteomics of integral membrane proteins (IMPs) enriched from mouse brains  has been presented (Wang et al. 2023).  Ion channels and transporters regulate nutrient absorption in health and disease (Lu et al. 2023).

The α-subunits of the Ca2+ and Na+ channels are usually four times as large as the K+ channel α-subunits and possess 4 units, each with 6 TMSs separated by a hydrophilic loop, for a total of 24 TMSs. These large channel proteins form heterotetrameric-unit structures equivalent to the homotetrameric structures of most K+ channels. All four units of the Ca2+ and Na+ channels are homologous to the single unit in the homotetrameric K+ channels. Some Na+ and Ca2+ channels are half sized with two 6 TMS units, forming dimers (see subfamily 1.A.1.11).  Ion flux via the eukaryotic channels is generally controlled by the transmembrane electrical potential (hence the designation, voltage-sensitive) although some are controlled by ligand or receptor binding. The 6 TMS VIC family members have a gating charge transfer center in the voltage sensors (Tao et al., 2010).  Structural aspects of the calcium channels, revealing the architectural features that underlie their feedback regulatory mechanisms have been reviewed (Minor and Findeisen 2010).  The evolution of VIC superfamily channels with a special emphasis on the metazoan lineage has been reviewed (Moran et al. 2015).  Evolutioin of the 4 TMS voltage sensor has also been reviewed (Freites and Tobias 2015).  Blockade of Na+ channels (NaVs) enables control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias (Bagal et al. 2015). Crotonoside regulates sodium and calcium channels in rabbit ventricular myocytes, diminishing arrhythmias (Liu et al. 2020). The structures and pharmacology of voltage-gated sodium and calcium channels, including the basis for their voltage-dependent activation, fast and slow inactivation, ion conductance and selectivity have been reviewed (Catterall et al. 2020). Voltage-gated sodium channels are prominent targets of marine toxins (Mackieh et al. 2021). A mutation (i.e., V1848I) in the sixth TMS of Domain IV of the sodium channel gives rise to indoxacarb resistance-associated mutation of Liriomyza trifolii, a pervasive plant pathogen (Li et al. 2022). Knowledge on the mechanisms underlying potassium channel quality control in the secretory pathway and diseases associated with channel misfolding have been reviewed (Nguyen and Brodsky 2023). Naringin is a flavonoid extracted from citrus plants; increasing the consumption of flavonoid-rich foods can reduce the incidence of cardiac arrhythmia. It inhibits many ion channel currents including I(Na.L), I(Ca.L), I(Na) I(K), and I(to) in ventricular myocytes (Li et al. 2023).

Voltage-gated sodium channels (VGSCs) are heteromeric transmembrane protein complexes. Nine homologous members, SCN1A-11A, make up the VGSC gene family. Sodium channel isoforms display a wide range of kinetic properties endowing different neuronal types with distinctly varied firing properties. Among the VGSCs isoforms, Nav1.7, Nav1.8 and Nav1.9 are preferentially expressed in the peripheral nervous system. These isoforms are known to be crucial in the conduction of nociceptive stimuli with mutations in these channels thought to be the underlying cause of a variety of heritable pain disorders (Kanellopoulos and Matsuyama 2016). Na+ channels are associated with neuropathic pain (Devor 2006). A 4 x 6 TMS template is shared among voltage-gated sodium (Nav1 and Nav2) and calcium channels (Cav1, Cav2, and Cav3) and leak channel (NALCN) plus homologs from yeast, different single-cell protists (heterokont and unikont) and algae (green and brown) (Fux et al. 2018). The asymmetrically arranged pores of 4x6 TMS channels allows for a changeable ion selectivity via a single lysine residue change in the high field strength site of the ion selectivity filter in Domains II or III.  Modeling has provided clues for rational drug design (Montini et al. 2018). Mexiletine, a class Ib antiarrhythmic drug, is used clinically to reduce or prevent myotonia and is neuroprotective. It binds to the upper part of the pore in the open state and lower part in the closed state. High-affinity binding in the open states of Nav1.4 and Nav1.5 is caused by a pi-pi interactions with Phe (Nakagawa et al. 2019). VGSCs are involved in a variety of diseases, including epilepsy, cardiac arrhythmias, and neuropathic pain, and therefore are therapeutic targets for the development of anticonvulsant, antiarrhythmic, and local anesthetic drugs. Xu et al. 2019 reviewed advances in understanding the structures and biological functions of VGSCs and summarized eight pharmacologically distinct ligand-binding sites in VGSCs and representative isoform-selective VGSC modulators. They also review studies on molecular modeling and computer-aided drug design for VGSCs. Domain- and state-specific shape of the electric field tunes voltage sensing in voltage-gated sodium channels (Kostritskii and Machtens 2023). 

There are four known K+ channel families in mammals (humans): (1) The voltage dependent K+ channels designated as Kv channels, which consist of twelve subfamilies. (2) The two pore domain channels, the K2P, which consist of fourteen subfamilies. (3) The calcium activated K+ channels, KCa channels, which consist of five subfamilies. (4) The inward rectifier K+ channels, the Kir, which include seven subfamilies, designated Kir 1 - Kir 7 with fifteen members. The diversity of voltage-dependent K+ channels in human pulmonary artery smooth muscle cells have been tabulated and reviewed (Platoshyn et al. 2004). G-protein coupled receptors (GPCRs) modulate a number of K+ channels. The most intensively studied and characterized are the K+ inward rectifier Kir 3 subfamily (Kir3.1-Kir3.4) (Gohar, 2006).  The Kv channels' voltage dependences are set in part by charged amino acid residues of the extracellular linkers which electrostatically affect the charged amino-acid residues of the voltage sensor, S4 (Elinder et al. 2016). Kv-type channels can be consdered to be allosteric machines in which gating may be dynamically influenced by some long-range interactional/allosteric mechanisms (Barros et al. 2019). Molecular dynamics simulations directly predict the response of voltage-gated K+ channels within a phospholipid bilayer membrane to applied transmembrane voltages (Tronin et al. 2019). Distinct lipid bilayer compositions have general and protein-specific effects on K+ channel function (Winterstein et al. 2021). A diversity of voltage-dependent K+ channels play roles in human pulmonary artery smooth muscle cells (Platoshyn et al. 2004). Pharmacological modulation of transglutaminase 2 to the closed conformation age-dependently lowers blood pressure and, by opening potassium channels, potentiates endothelium-dependent vasorelaxation (Pinilla et al. 2021). Pliushcheuskaya and Künze 2023 highlighted studies that link structural data with modeling and chemoinformatic approaches for the identification and characterization of new molecules targeting ion channels. Regulatory effects of potassium channel blockers on potassium channel gene expression upon nervous necrosis virus infection have been observed in the sevenband grouper, Hyporthodus septumfasciatus (Rajendran et al. 2023).

BK-type Ca2+ channels and lipid phosphatases have a transmembrane voltage sensor domain (VSD) that moves in response to physiological variations of the membrane potential to control their activities. However, VSD movements and coupling to the channel or phosphatase activities may differ depending on various interactions between the VSD and its host molecules (Cui 2010). BK-type voltage, Ca²+ and Mg²+ activated K+ channels contain the VSD and a large cytosolic domain (CTD) that binds Ca²+and Mg²+. VSD movements are coupled to BK channel opening with a unique allosteric mechanism and are modulated by Ca²+ and Mg²+ binding via interactions between the channel pore, VSD and CTD. It is energetically advantageous for the pore to be controlled by multiple stimuli (Cui 2010). Insight regarding four types of tetrameric channels with 6 TMSs architectures, Eag1, SK2/SK4, TRPV5/TRPV6 and KCNQ1-5, and their regulation by calmodulin (CaM) have been described structurally (Núñez et al. 2020). Different CaM regions, N-lobe, C-lobe and the EF3/EF4-linker, play prominent signaling roles in different complexes, leading to the realization that crucial non-canonical interactions between CaM and its target channel proteins are apparent in the full-channel structures. Different mechanisms to control gating are used, including direct and indirect mechanical actuation over the pore, allosteric control, indirect effects through lipid binding, as well as direct plugging of the pore. Although each CaM lobe engages through apparently similar α-helices, they do so using different docking strategies (Núñez et al. 2020).  Ion channels and transporters regulate nutrient absorption in health and disease (Lu et al. 2023). They summarized the literature on ion channels, related receptors, and drugs to explore the mechanism of cancer-induced bone pain.

The erg or Kv11 channel is a subfamily of the voltage-dependent K+ channel superfamily and includes three members: Kv11.1 (erg1), Kv11.2 (erg2) and Kv11.3 (erg3) channels. The most studied member of this subfamily is Kv11.1 that regulates the duration of the cardiac action potential. Mutations in this channel have been associated with cardiac arrhythmias and sudden death (Bronstein-Sitton, 2006). All charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. Calisto et al. 2021 explored these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. The lateral voltage can regulate the transmembrane current in both ion-channel-incorporated and fullerene-incorporated lipid bilayer systems (Ma et al. 2021).  Chen et al. 2023 have summarized cryo-EM findings on ion channels with molecular identities and discussed current knowledge of proposed channel proteins awaiting cryo-EM analyses. They also present a classification of ion channels according to their architectures and evolutionary relationships and discuss the possibility and strategy of identifying more ion channels by analyzing structures of transmembrane proteins of unknown function. The opening of ion channels may be regulated by the surface electric double layer of the cell membrane (Zhou et al. 2022). Ion channels and metal ions may play roles in Parkinson's Disease (PD) (Vaidya et al. 2024).

Five types of Ca2+ channels are expressed in the CNS of mammals: The L-type (Cav1), N-type (Cav2.2), P/Q-type (Cav2.1), R-type (Cav2.3), and the T-type (Cav3). Each Cav channel is a multimeric protein composed of a pore forming α1 subunit and the auxiliary β (Cavβ), α2δ and γ subunits. There are four known Cavβ subunits, in addition to four α2δ subunits and eight γ subunits. The best characterized Ca2+ channels that are regulated by GPCRs are the N-type and the P/Q-type which have significant roles in neuronal communication. This mechanism is the basis of synaptic modulation caused by endogenous hormones as well as exogenously applied agents (such as analgesia caused by morphine). The identification of the types of Ca2+ channels that are modulated by GPCRs was enabled by the use of specific toxins: ω-Conotoxin GVIA for the N-type channels and ω-Agatoxin-IVA for the P/Q-type channels. Many Ca2+ channels are regulated by GPCRs (Gohar, 2006). Endodgenous membrane phosphatidylinositol 4,5-biphosphate, PIP2, activates high voltage activated L-, N- and P/Q type Ca2+ channels, and PIP2 depletion inhibits these Ca2+ channels (Suh et al., 2010). Isoliensinine (IL) extracted from lotus seed has a good therapeutic effect on cardiovascular diseases. It does so by inhibiting INaL and ICaL in ventricular myocytes, which indicates it has potential antiarrhythmic action (Liu et al. 2021). Analgesic plant- and fungus-derived analgesic natural products target voltage-gated sodium and calcium channels (Calderon-Rivera et al. 2022). Voltage-gated calcium channels (VGCCs) are targeted to treat pain conditions. Since the discovery of their relation to pain processing control, they have been investigated to find new strategies for better pain control. In a review, Antunes et al. 2023 provided an overview of naturally based and synthetic VGCC blockers, highlighting the development of drugs focusing on the VGCC subtypes as well as mixed targets with pre-clinical and clinical analgesic effects.

In type-2 diabetes, the tight link between glucose sensing and insulin secretion is impaired due to mutations in a KATP channel. K+ channels that are sensitive to ATP are plasma membrane protein complexes composed of four Kir6.2 (KCNJ11) pore-forming subunits surrounded by four SUR1 (sulphanylurea receptor, of the ABC superfamily) auxiliary subunits. These protein complexes sense the amount of glucose entering a beta cell in the pancreas since the activity of KATP channels depends on the amount of ATP in the cytoplasm, which in turn depends on the amount of glucose absorbed by the beta cell. The activity of KATP channels is negatively correlated to the amount of ATP. KATP channels are the main channels that are open during resting conditions. Closure of KATP channels by increased ATP concentrations leads to membrane depolarization, which causes opening of voltage dependent Ca2+ (Cav) channels, leading to Ca2+ influx. The main Cav channels that control insulin secretion are L-type channels of the Cav1 subfamily (Cav1.2 and/or Cav1.3) (Cherki et al., 2006).  The impact of aging on vascular ion channels has been reviewed (Behringer 2023).

Ion channelopathies are inherited diseases in which alterations in control of ion conductance through the central pore of ion channels impair cell function, leading to periodic paralysis, cardiac arrhythmia, renal failure, epilepsy, migraine and ataxia (Kullmann and Waxman, 2010). However, Sokolov et al. (2007) have shown that, in contrast with this well-established paradigm, three mutations in gating-charge-carrying arginine residues in an S4 segment of NaV1.4 (TC #1.A.1.10.4) that cause hypokalaemic periodic paralysis induce a hyperpolarization-activated cationic leak through the voltage sensor of the skeletal muscle NaV1.4 channel. This 'gating pore current' is active at the resting membrane potential and closed by depolarizations that activate the voltage sensor. It has similar permeability to Na+, K+ and Cs+, but the organic monovalent cations tetraethylammonium and N-methyl-D-glucamine are much less permeant. The inorganic divalent cations Ba2+, Ca2+ and Zn2+ are not detectably permeant and block the gating pore at millimolar concentrations. The results reveal gating pore current in naturally occurring disease mutations of an ion channel and show a clear correlation between mutations that cause gating pore current and hypokalemic periodic paralysis. The involvement of channel protein in neurodegenerative disorders has been reviewed (Kumar et al. 2016).

Several putative K+-selective channel proteins of the VIC family have been identified in prokaryotes. The structures of two of them, the 2 TMS voltage-insensitive KcsA K+ channel of Streptomyces lividans and the 6 TMS KvAP voltage-sensitive K+ channel of Aeropyrum pernix, have been solved to 3.2 Å resolution (TC #1.A.1.1.1 and 1.A.1.17.1, respectively) (Cuello et al., 2004; Doyle et al., 1998; Jiang et al., 2003a,b; Ruta et al., 2003). Both proteins possess four identical subunits, each with two transmembrane helices, arranged in the shape of an inverted teepee or cone, forming the channel. The cone cradles the 'selectivity filter' P domain in its outer end. The narrow selectivity filter is only 12 Å long, whereas the remainder of the channel is wider and lined with hydrophobic residues. The first TMS (S1) is at the contact interface between the voltage sensing and pore domains (Cuello et al., 2004). A large water-filled cavity and helix dipoles stabilize K+ in the pore. The selectivity filter has two bound K+ ions about 7.5 Å apart from each other. Ion conduction is proposed to result from a balance of electrostatic attractive and repulsive forces. Evolutionary relationships between K+ channels and certain K+:cation symporters has been reviewed and discussed (Durell et al., 1999).

KcsA channels twist around the axis of the pore. Conformational changes are prevented by an open-channel blocker, tetrabuthylammonium. Random clockwise and counterclockwise twisting in the range of several tens of degrees originate in the transmembrane domain and are transmitted to the cytoplasmic domain. This twisting motion may play a role in gating (Shimizu et al., 2008). This coupling suggests a mechanical interplay between the transmembrane and cytoplasmic domains. Artificial cell membrane systems provide a platform for reconstituting ion channels (Komiya et al. 2020).  Medeiros-Silva et al. 2024 distinguished different hydrogen-bonded belices in proteins by efficient (1)H-detected three- dimensional solid-state NMR. Thus, (Medeiros-Silva et al. 2024). Helical structures in proteins include not only alpha-helices but also 3(10) and pi helices. These secondary structures differ in the registry of the C horizontal lineO...H-N hydrogen bonds, which are i to i + 4 for alpha-helices, i to i + 3 for 3(10) helices, and i to i + 5 for pi-helices.  hCOhNH experiments are generally applicable and can be used to distinguish not only different types of helices but also different types of beta-strands and other hydrogen-bonded conformations in proteins (Medeiros-Silva et al. 2024).

The open-state conformation of the KcsA K+ channel has been studied using the Monte Carlo normal mode following simulations. Gating involves rotation and unwinding of the TM2 bundle, lateral movement of the TM2 helices away from the channel axis, and disappearance of the TM2 bundle. The gating transition is intrinsically multidimensional and described by a rough free-energy landscape (Delemotte et al. 2015).  The open-state conformation of KcsA exhibits a wide inner vestibule, with a radius approximately 5-7 Å and inner helices bent at the A98-G99 hinge. Computed conformational changes demonstrate that spin labeling and X-ray experiments illuminate different stages in gating: transition begins with clockwise rotation of the TM2 helices ending at a final state with the TM2 bend hinged near residues A98-G99. The concordance between the computational and experimental results provides atomic-level insight into the structural rearrangements of the channel's inner pore (Miloshevsky and Jordan, 2007).

Interconversion between conductive and non-conductive forms of the K+ channel selectivity filter underlies a variety of gating events. Cuello et al. (2010) reported the crystal structure of the Streptomyces lividans K+ channel, KcsA, in its open-inactivated conformation. They investigated the mechanism of C-type inactivation gating at the selectivity filter from channels 'trapped' in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 Å in closed KcsA to 32 Å when fully open. A correlation was observed between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. A gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. The S4 helix may undergo a transition from an alpha-helical conformation to a short-lived different secondary structure transiently before reaching the active state in the activation process (Bassetto et al. 2019).

The archaeal voltage-dependent K+ channel (TC #1.A.1.17.1) has been characterized (Ruta et al., 2003). It exhibits the properties of a classical neuronal K+ channel including structural conservation in the voltage sensor as revealed by specific high affinity tarantula venom toxin binding. This toxin evolved to inhibit animal Kv channels.  The first four transmembrane helices (S1-S4) of any 6 TMS VIC family member, undergoes the first conformational changes in response to membrane voltage variations, and the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing (Miceli et al. 2015).

Three other bacterial VIC family channels have been characterized functionally. One is the 2 TMS LctB channel of Bacillus stearothermophilus (TC #1.A.1.1.2; Wolters et al., 1999), the second is the 6 TMS Kch channel of E. coli (TC #1.A.1.13.1; Ungar et al., 2001), and the third is the Bacillus halodurans 6 TMS voltage-gated Na+ channel (TC #1.A.1.14.1; Ren et al., 2001). This last-mentioned protein, called NaChBac, is most similar in sequence to voltage-gated Ca2+ channels (TC #1.A.1.11.1-3). A family of these 6 TMS voltage-gated Na+ channels (22-54% identical) is widespread in bacteria, suggesting a fundamental function (Koishi et al., 2004). These three proteins are all distantly related to KcsA of S. lividans, particularly LctB. Kch has been shown to form tetramers that may function to maintain the membrane potential in the early stationary phase of growth (Ungar et al., 2001).

Prokaryotic voltage-gated sodium channels form homotetramers with each subunit contributing six transmembrane α-helices (S1-S6). Helices S5 and S6 form the ion-conducting pore, and helices S1-S4 function as the voltage sensor with helix S4 thought to be the essential element for voltage-dependent activation. The crystal structures have provided insight into voltage-gated K channels, revealing a characteristic domain arrangement in which the voltage sensor domain of one subunit is close to the pore domain of an adjacent subunit in the tetramer. Shimomura et al. (2011) showed that the domain arrangement in NaChBac, (TC# 1.A.1.14.1), is similar to that in voltage-gated K+ channels. The domain arrangement and vertical mobility of helix S4 in NaChBac indicated that the structure and mechanism of voltage-dependent activation in prokaryotic Na+ channels are similar to those in canonical voltage-gated K+ channels (Shimomura et al., 2011).

In eukaryotes, each VIC family channel type has several subtypes based on pharmacological and electrophysiological data. Thus, there are six types of Ca2+ channels (L, N, P, Q, R and T). There are at least ten types of K+ channels, each responding in different ways to different stimuli: voltage-sensitive [Ka, Kv, Kvr, Kvs and Ksr], Ca2+-sensitive [BKCa, IKCa and SKCa] and receptor-coupled [KM and KACh+ channels (I, II, III, μ1, H1 and PN3). Cyclic nucleotide-responsive channels (families 1.A.1.4 and 1.A.1.5) contain centrally located CAP_ED domains, although the cyclic nucleotide regulatory properties have only been reported for family 1.A.5, not 1.A.4. Tetrameric channels from both prokaryotic and eukaryotic organisms are known in which each α-subunit possesses 2 TMSs rather than 6, and these two TMSs are homologous to TMSs 5 and 6 of the 6 TMS unit found in the voltage-sensitive channel proteins. KcsA of S. lividans is an example of such a 2 TMS channel protein. These channels may include the KNa (Na+-activated) and KVol (cell volume-sensitive) K+ channels, as well as distantly related channels such as the Tok1 K+ channel of yeast. The TWIK-1 and -2, TREK-1, TRAAK, and TASK-1 and -2 K+ channels all exhibit a duplicated 2 TMS unit and may therefore form a homodimeric channel. About 50 of these 4 TMS proteins are encoded in the C. elegans genome. Because of insufficient sequence similarity with proteins of the VIC family, inward rectifier K+ IRK channels (ATP-regulated; G-protein-activated) which possess a P domain and two flanking TMSs are placed in a distinct family (TC #1.A.2). However, substantial sequence similarity in the P region suggests that they are homologous. The β, γ, and δ subunits of VIC family members, when present, frequently play regulatory roles in channel activation/deactivation.

The function of voltage-dependent K+ channels is dependent on the negatively charged phosphodiester of phospholipid molecules. A non-voltage-dependent K+ channel does not exhibit the same dependence. It was proposed that the phospholipid membrane, by providing stabilizing interactions between positively charged voltage-sensor arginine residues and negatively charged lipid phosphodiester groups, provides an appropriate environment for the energetic stability and operation of the voltage-sensing machinery. The usage of arginine residues in voltage sensors is an adaptation to the phospholipid composition of cell membranes (Schmidt et al., 2006). The X-ray structure of a voltage-dependent K+ channel (Kv) can explain charge stabilization within the membrane and thus suggests the mechanism for coupling voltage-sensor movements to pore gating (Long et al., 2007).

Voltage-gated ion channels derive their voltage sensitivity from the movement of specific charged residues in response to a change in transmembrane potential. Several studies on mechanisms of voltage sensing in ion channels support the idea that these gating charges move through a well-defined permeation pathway. This gating pathway in a voltage-gated ion channel can also be mutated to transport free cations, including protons (Chanda and Chanda and Bezanilla, 2008). The discovery of proton channels homologous to voltage-sensing domains suggests that the same gating pathway is used by voltage-dependent proton transporters. The voltage sensor depends on the movement of charges in an electric field. Gating currents of the voltage sensor depend on the movements of positively charged arginines through the hydrophobic plug of a voltage sensor domain. Transient movements of these permanently charged arginines, caused by a change in the transmembrane potential further drag the S4 segment and induce opening/closing of the ion conduction pore by moving the S4-S5 linker. Thus, moving permanent charge induces capacitive current flow (Horng et al. 2018). Salt bridge interactions between S4-arginines and the negatively charged residues in other TMSs in the voltage sensor domain appear to contribute more to stabilizing the energy than the van der Waals interactions between nonpolar residues (Boonamnaj et al. 2021).

The voltage-sensing domains (VSDs) of K+ channels have been shown to undergo large rearrangements during gating, whereas the S4 segment may remain positioned between the central pore and the remainder of the VSD in both states (Grabe et al., 2007). In the Shaker K+ channel (1.A.1.2.6), mutation of the first arginine residue of the S4 helix to a smaller uncharged residue makes the VSD permeable to ions in the resting conformation ('S4 down'). There are four omega pores per channel, consistent with one conduction path per VSD. Permeating ions from the extracellular medium enter the VSD at its peripheral junction with the pore domain, and then plunge into the core of the VSD in a curved conduction pathway (Tombola et al. 2007).

Amongst the nine voltage-gated K(+) channel (Kv) subunits expressed in Arabidopsis, AtKC1 does not seem to form functional Kv channels. Co-expression of AtKC1 (1.A.1.4.9), AKT1 (1.A.1.4.1) and/or KAT1 (1.A.1.4.7) genes in tobacco mesophyll protoplasts showed that AtKC1 remains in the endoplasmic reticulum unless it is co-expressed with AKT1 (Duby et al., 2008). Heteromeric AtKC1-AKT1 channels display functional properties different from those of homomeric AKT1 channels. In particular, the activation threshold voltage of the former channels is more negative than that of the latter ones preferred to AKT1-AKT1 homodimers during the process of tetramer assembly. Thus, AtKC1 is a Kv subunit, which downregulates the physiological activity of other Kv channel subunits (Duby et al., 2008).

Shaker-type K+ channels in plants display distinct voltage-sensing properties despite sharing sequence and structural similarity. For example, an Arabidopsis K+ channel (SKOR) and a tomato K+ channel (LKT1) share high amino acid sequence similarity and identical domain structures; however, SKOR conducts outward K+ current and is activated by positive membrane potentials (depolarization), whereas LKT1 conducts inward current and is activated by negative membrane potentials (hyperpolarization). The structural basis for the 'opposite' voltage-sensing properties of SKOR and LKT1 was determined in SKOR channel single amino acid mutations that converted the outward-conducting channel into an inward-conducting channel. Domain-swapping and random mutagenesis produced similar results, suggesting functional interactions between several regions of the SKOR protein that lead to specific voltage-sensing properties. Thus, dramatic changes in rectifying properties can be caused by single amino acid mutations.

The structure of the transmembrane regions of the bacterial cyclic nucleotide-regulated channel MlotiK1 (TC# 1.A.1.25.1), a non-voltage-gated 6 TM channel, has been determined (Clayton et al., 2008). The S1-S4 domain and its associated linker serve as a clamp to constrain the gate of the pore and possibly function in concert with ligand-binding domains to regulate the opening of the pore. Motions of the S6 inner helices can gate the ion conduction pathway at a position along the pore closer to the selectivity filter than the canonical helix bundle crossing.

Carbon monoxide (CO) is a lethal gas, but it is also a physiological signaling molecule capable of regulating a variety of proteins. Among them, large-conductance Ca2+- and voltage-gated K+ (Slo1 BK) channels, important in vasodilation and neuronal firing, have been suggested to be directly stimulated by CO. In fact, CO activates Slo1 BK channels (Hou et al, 2008) in the absence of Ca2+ in a voltage-sensor-independent manner. The stimulatory action of CO requires an aspartic acid and two histidine residues located in the cytoplasmic RCK1 domain. CO probably acts as a partial agonist for the high-affinity divalent cation sensor in the RCK1 domain of the Slo1 BK channel (1.A.1.3.2).

Ca2+-activated BK channels (e.g., 1.A.1.3.3) modulate neuronal activities, including spike frequency adaptation and synaptic transmission. Ca2+-binding sites and the activation gate are spatially separated in the channel protein. By studying an Asp-to-Gly mutation (D434G) associated with human syndrome of generalized epilepsy and paroxysmal dyskinesia (GEPD), Yang et al. (2010) showed that a cytosolic motif immediately following the activation gate S6 helix, known as the AC region, mediates the allosteric coupling between Ca2+ binding and channel opening. The GEPD mutation inside the AC region increases BK channel activity by enhancing this allosteric coupling. Ca2+ sensitivity is enhanced by increases in solution viscosity that reduce protein dynamics. The GEPD mutation alters such a response, suggesting that a less flexible AC region may be more effective in coupling Ca2+ binding to channel opening.

The voltage sensors in VIC family cation channels use a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore (Catterall, 2010). Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in Na(V)1.4 channels is the primary pathophysiological mechanism in hypokalemic periodic paralysis. Confinement of water within a hydrophobic cavity can drive a cooperative dewetting transition. For a nanometer-scale pore, the dewetting transition leads to a stable dry state that is physically open but impermeable to ions (Yazdani et al. 2020). This phenomenon is often referred to as hydrophobic gating. Numerous ion channels utilize hydrophobic gating in their activation and regulation. Yazdani et al. 2020 reviewed recent theoretical, simulation, and experimental studies that together establish the principles of hydrophobic gating and discuss how channels of various sizes, topologies, and biological functions can utilize these principles to control the thermodynamic properties of water within their interior pores for gating and regulation.

In animals, calcium regulates heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca2+ in excitable cells are high-voltage activated (HVA) Ca2+ channels, Cav (Buraei and Yang, 2010). These are plasma membrane proteins composed of several subunits, including α1, α2δ, β, and γ. Although the principal α1 subunit contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit plays an essential role in regulating the surface expression and gating properties of HVA Ca2+ channels. Cavβ is also crucial for the modulation of HVA Ca2+ channels by G proteins, kinases, and the Ras-related RGK GTPases. Additional proteins modulate HVA Ca2+ channels by binding to Cavβ, and it may carry out Ca2+ channel-independent functions, including directly regulating gene transcription. All four subtypes of Cavβ, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Cavβs reveal how they interact with Cavα1 (Buraei and Yang, 2010).

Regulator of K+ conductance (RCK) domains control the activity of a variety of K+ transporters and channels, including the human large conductance Ca2+-activated K+ channel that is important for blood pressure regulation and control of neuronal firing, and MthK, a prokaryotic Ca2+-gated K+ channel that has yielded structural insight toward mechanisms of RCK domain-controlled channel gating. In MthK, a gating ring of eight RCK domains regulates channel activation by Ca2+. Pau et al. (2011) showed that each RCK domain contributes to three different regulatory Ca2+-binding sites, two of which are located at the interfaces between adjacent RCK domains. The additional Ca2+-binding sites, resulting in a stoichiometry of 24 Ca2+ions per channel, is consistent with the steep relation between [Ca2+] and MthK channel activity. Comparison of Ca2+-bound and unliganded RCK domains suggests a physical mechanism for Ca2+-dependent conformational changes that underlie gating in this class of channels.

The mechanism of ion channel voltage gating - how channels open and close in response to voltage changes - has been debated since Hodgkin and Huxley's seminal discovery that the crux of nerve conduction is ion flow across cellular membranes. Using all-atom molecular dynamics simulations, Jensen et al. (2012) showed how a voltage-gated potassium channel (KV) switches between activated and deactivated states. On deactivation, pore hydrophobic collapse rapidly halts ion flow. Subsequent voltage-sensing domain (VSD) relaxation, including inward, 15-angstrom S4-helix motion, completes the transition. On activation, outward S4 motion tightens the VSD-pore linker, perturbing linker-S6-helix packing. Fluctuations allow water, then potassium ions, to reenter the pore; linker-S6 repacking stabilizes the open pore. Jensen et al. (2012) proposed a mechanistic model for the sodium/potassium/calcium voltage-gated ion channel superfamily that reconciles apparently conflicting experimental data.

In yeast and filamentous fungi, the Ca2+ channel, Cch1 forms a complex with an auxiliary subunit Mid1 to form the active complex (1.A.1.11.10). Mid1 was originally reported to have Ca2+ channel activity because when produced in Chinese hamster ovary cells, it produced channel activity (Kanzaki et al., 1999). However, it is now clear from many studies that Mid1 is required for Cch1-mediated Ca2+ flux and probably has no inherent channel activity (Ma et al., 2011; Martin et al., 2011; Cavinder and Trail, 2012). Mid1 was originally assigned to TC family: 1.A.16, The Yeast Stretch-Activated Cation-selective Ca2+ Channel, Mid1 (Mid1) Family, but this assignment has been deleted from TCDB, and Mid1 proteins have been incorporated into TC subfamily 1.A.1.11.

Hyperpolarization activated and cyclic nucleotide-gated (HCN) ion channels as well as cyclic nucleotide-gated (CNG) ion channels are essential for the regulation of cardiac cells, neuronal excitability, and signaling in sensory cells (Börger et al. 2014). Both classes are composed of four subunits. Each subunit comprises a transmembrane region, intracellular N- and C-termini, and a C-terminal cyclic nucleotide-binding domain (CNBD). Binding of cyclic nucleotides to the CNBD promotes opening of both CNG and HCN channels. In the case of CNG channels, binding of cyclic nucleotides to the CNBD is sufficient to open the channel. In contrast, HCN channels open upon membrane hyperpolarization and their activity is modulated by binding of cyclic nucleotides, shifting the activation potential to more positive values. Several high-resolution structures of CNBDs from HCN and CNG channels are available.  Börger et al. 2014 reported the complete backbone and side chain resonance assignments of the murine HCN2 CNBD with part of the C-linker.

Plant Shaker channels are members of the 6 transmembrane-1 pore (6TM-1P) cation channel superfamily as are the animal Shaker (Kv) and HCN channels. All these channels are voltage-gated K+ channels: Kv channels are outward-rectifiers, opened at depolarized voltages, and HCN channels are inward-rectifiers, opened by membrane hyperpolarization. Among plant Shaker channels, are outward-rectifiers, inward-rectifiers and weak-rectifiers with weak voltage dependence (Nieves-Cordones and Gaillard 2014). Despite the absence of crystal structures of plant Shaker channels, functional analyses coupled to homology modeling, mostly based on Kv and HCN crystals, have permitted the identification of several regions contributing to plant Shaker channel gating. In a recent mini-review, Nieves-Cordones and Gaillard 2014 updated information on the voltage-gating mechanism of plant Shaker channels which seem to be comparable to that proposed for HCN channels.

The membrane dipole potential (Psid) constitutes one of three electrical potentials generated by cell membranes. Psid arises from the unfavorable parallel alignment of phospholipid and water dipoles, and varies in magnitude both longitudinally and laterally across the bilayer according to membrane composition and phospholipid packing density. Pearlstein et al. 2016 proposed that dynamic counter-balancing between Psid and the transmembrane potential (Δψ) governs the conformational state transitions of voltage-gated ion channels.

In the cell membrane, ion channels and enzymes are able to sense voltage. Sodium, Ca2+ and K+ voltage-dependent channels of the VIC superfamily have a conserved positively charged transmembrane (S4) segment that moves in response to changes in membrane voltage.S4 forms part of a domain that crystallizes as a well-defined structure consisting of the first four transmembrane (S1-S4) segments of the protein, the voltage sensor domain (VSD). VSD movements are allosterically coupled to pore opening to various degrees, depending on the type of channel. How many charges are moved during channel activation, how much they move, and which are the molecular determinants that mediate the electromechanical coupling between the VSD and the pore domains are discussed by Gonzalez et al. 2012.

The family of P-loop channels is characterized by four membrane re-entering extracellular P-loops that connect eight transmembrane helices.  X-ray and cryo-EM structures of the open- and closed-state channels show conserved state-dependent folding despite the fact that the sequences are diverse. In homologous sodium, calcium, TRPV and two-pore channels, the pore-lining helices contain conserved asparagines that may or may not include pi-helix bulges. Comparison of the sequence- and 3D-alignemnts suggests that the asparagines appeared in evolution as insertions that are accommodated in two ways: by pi-helix bulges, which preserve most of inter-segment contacts, or by twists of the C-terminal thirds and switch of inter-segment contacts (Tikhonov and Zhorov 2017). 

Several VIC superfamily K+ channels are affected by molybdenum disulfide nanoflakes (MoS2) (Gu et al. 2017).  For example, MoS2 binds to the extracellular loops of KcsA, which indirectly destroys the delicate structure of the selectivity filter, causing a strong leak of K+ ions.  In the binding mode with Kir3.2, a MoS2 nanoflake completely covers the entrance to the channel pore, affecting ion conduction. For the Kv1.2 chimera, the MoS2 nanoflake prefers to bind into a crevice located at the extracellular side of the Voltage Sensor Domain (VSD). This crevice involves the N-terminal segment of S4, which directly controls the gating process of the Kv1.2 chimera channel by electromechanical coupling of the VSD to the transmembrane electric field (Gu et al. 2017).

Many potassium-channel openers (agonists) share a distinct biaryl-sulfonamide motif. The negatively charged variants of these compounds bind to the top of the voltage-sensor domain, between transmembrane segments 3 and 4, to open the channel. Although biaryl-sulfonamide compounds open some potassium channels, they have also been reported to block sodium and calcium channels (Liin et al. 2018).  The biaryl-sulfonamide motif seems to be a general ion-channel activator motif. Voltage-dependent potassium channels are essential for the generation of nerve impulses.

Voltage sensitivity is conferred by charged residues located mainly in the fourth transmembrane segment (S4) of each of the four identical subunits that make up the channel. These charged segments relocate when the potential difference across the membrane changes, controlling the ability of the pore to conduct ions (Starace and Bezanilla 2004). In the crystal structure of the Aeropyrum pernix potassium channel KvAP, the S4 and part of the third (S3B) transmembrane alpha-helices are connected by a hairpin turn in an arrangement termed the 'voltage-sensor paddle'. This structure was proposed to move through the lipid bilayer during channel activation, transporting positive charges across a large fraction of the membrane. However  Starace and Bezanilla 2004 showed that replacing the first S4 arginine by histidine in the Shaker potassium channel creates a proton pore when the cell is hyperpolarized. Formation of this pore does not support the paddle model, as protons would not have access to a lipid-buried histidine. Thus, at hyperpolarized potentials, water and protons from the internal and external solutions must be separated by a narrow barrier in the channel protein that focuses the electric field to a small voltage-sensitive region.

Voltage-dependent activation of voltage-gated cation channels results from the outward movement of arginine-bearing helices within proteinaceous voltage sensors. The arginine side chains in the voltage-sensing residues in potassium channels may make electrostatic or steric contributions to voltage sensing. Infield et al. 2018 functionally characterized engineered Shaker K+ channels, and observed effects on both voltage sensitivity and gating kinetics following substitution of the fourth S4 charged arginine with neutral citrulline, which caused substantial changes in the conductance-voltage relationship and channel kinetics. This suggested that a positive charge is required at this position for efficient voltage sensor deactivation and channel closure.

Toxins of voltage-gated ion channels are broadly divided into two categories—pore blockers that physically occlude the channel pore and gating modifiers that alter channel gating by interfering with the voltage sensor domains (VSDs). Whereas small-molecule neurotoxins such as tetrodotoxin (TTX) and saxitoxin (STX) function as pore blockers, most peptidic Nav channel toxins are gating modifiers that trap the channel in a particular stage of the gating cycle through interactions with one or more VSDs. Shen et al. 2018 determined the structure of NavPaS, the Na+ channel from the American cockroach, bound to a peptide toxin, Dc1a, from the venom of the desert bush spider, Diguetia canitries that specifically binds VSDII of insect Navs to promote chanell opeining, as well as TTX or STX that bind to and block the pore.  Dc1a binds in a cleft between VSDII and hte pore region, causing structural rearrangements (see 8.B.30 for the Dc1a toxin descrption.

Calcium channels play roles in tumorigenesis and progression. Zhong et al. 2019 reviewed the evidence for a linkage between calcium channels and major characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, evasion of immune surveillance, and the alterations of tumor microenvironment. Ion channels also play active roles in phagocytosis. The participation of some channels in cell proliferation during interphase and mitosis has been discussed (Rosendo-Pineda et al. 2020). Pozdnyakov et al. 2018 characterized the functional determinants (selectivity filter, voltage sensor, Nav-like inactivation gates, Cavbeta-interaction motifs, and calmodulin-binding regions) of 277 eukaryotic VIC family members and constructed a phylogenetic tree. This allowed them to uncovere lineage-specific structural gains and losses in the course of evolution and suggest the ancient structural features of these channels.

Voltage-gated sodium channels are targets for a range of pharmaceutical drugs developed for the treatment of neurological diseases. Cannabidiol (CBD), the non-psychoactive compound isolated from cannabis plants, has been approved for treatment of two types of epilepsy associated with sodium channel mutations. CBD binds at a site at the interface of the fenestrations and the central hydrophobic cavity of the channel (Sait et al. 2020). Binding at this site blocks the TM sodium ion translocation pathway, providing a molecular mechanism for channel inhibition. The closely-related psychoactive tetrahydrocannabinol seems not to have the same effects on these channels. The TRPV2 channel may also be a target site for CBD.

K2P K+ channels contribute to many processes including anesthesia, pain, arrythmias, ischemia, hypertension, migraine, intraocular pressure regulation, and lung injury responses. Structural studies of six homomeric K2Ps have established the basic architecture of this channel sub-family, revealed key moving parts involved in K2P function, uncovered the importance of asymmetric pinching and dilation motions in the K2P selectivity filter (SF) C-type gate, and defined two K2P structural classes based on the absence or presence of an intracellular gate (Natale et al. 2021). Further, a series of structures characterizing K2P:modulator interactions have revealed a striking polysite pharmacology housed within an approximately 70 kDa channel. Binding sites for small molecules or lipids that control channel function are found at every layer of the channel structure, starting from its extracellular side through the portion that interacts with the membrane bilayer inner leaflet. This framework provides the basis for understanding how gating cues sensed by different channel parts control function, and how small molecules and lipids modulate K2P activity (Natale et al. 2021).

In in vitro experiments on isolated rat hippocampal neurons, Tsorin et al. 2022 studied the electrophysiological mechanisms of the antiarrhythmic effects of N-deacetyllappaconitine monochlorhydrate (DALCh), active metabolite of lappaconitine hydrobromide (allapinin). Electrical activity of neurons was recorded by the patch-clamp method in the whole cell configuration. DALCh increased the duration of both slow and fast depolarization phases and decreased the amplitude of the action potential. DALCh effectively inhibited transmembrane currents of Na+ ions and partially K+ ions through the corresponding transmembrane voltage-gated ion channels. Thus, DALCh, in contrast to lappaconitine hydrobromide, belongs not to the 1C, but to the 1A class of antiarrhythmics according to the Vaughan-Williams classification (Tsorin et al. 2022). 

The anti-epileptic drug lamotrigine (LTG) is used to treat various neurological disorders, including epilepsy and bipolar disorder. LTG modulates the activity of voltage-gated ion channels, particularly those related to the inhibition of neuronal excitability. Additionally, LTG has been found to have neuroprotective effects, potentially through the inhibition of glutamate release and the enhancement of GABAergic neurotransmission. LTG's unique mechanism of action compared to other anti-epileptic drugs has led to the investigation of its use in treating other CNS disorders, such as neuropathic pain, PTSD, and major depressive disorder (Costa and Vale 2023). This drug has been combined with other anti-epileptic drugs and mood stabilizers, which may enhance its therapeutic effects. Thus, LTG's potential to modulate multiple neurotransmitters and ion channels in the CNS makes it a promising drug for treating various neurological disorders.

The renin-angiotensin-aldosterone system (RAAS) plays a crucial role in maintaining various physiological processes in the body, including blood pressure regulation, electrolyte balance, and overall cardiovascular health. Compounds or drugs known to perturb the RAAS might have an additional impact on transmembrane ionic currents.  Lu and Wu 2023 presented a selection of chemical compounds or medications that interfer with the RAAS. It is noteworthy that these substances may also exhibit regulatory effects in different types of ionic currents. Apocynin, known to attenuate the angiotensin II - induced activation of epithelial Na+ channels, was shown to stimulate peak and late components of voltage-gated Na+ current (I(Na)). Esaxerenone, an antagonist of the mineralocorticoid receptor, can exert an inhibitory effect on peak and late I(Na) directly. Dexamethasone, a synthetic glucocorticoid, can directly enhance the open probability of large-conductance Ca2+-activated K+ channels. Sparsentan, a dual-acting antagonist of the angiotensin II receptor and endothelin type A receptors, was found to suppress the amplitude of peak and late I(Na) effectively. Telmisartan, a blocker of the angiotensin II receptor, was effective in stimulating the peak and late I(Na) along with a slowing of the inactivation time course of the current. However, telmisartan's presence can also suppress the erg-mediated K+ current. Moreover, tolvaptan, recognized as an aquaretic agent that can block the vasopressin receptor, was noted to suppress the amplitude of the delayed-rectifier K+ current and the M-type K+ current directly. These observations indicate that these substances not only have an interference effect on the RAAS but also exert regulatory effects on different types of ionic currents (Lu and Wu 2023). 

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a phytoalexin present in a variety of plant species. Resveratrol has a wide spectrum of pharmacologic properties. Studies have shown that potassium (K) channels are potential targets in the mechanism of resveratrol action (Rajkovic et al. 2020). Inhibition of K channels causes membrane depolarization and then contraction of smooth muscles, while activation leads to membrane hyperpolarization and subsequent relaxation. Five diverse types of K channels have been identified in smooth muscle cells in different tissue: ATP-sensitive K channels (KATP), voltage-dependent K channels (Kv), Ca2+ - and voltage-dependent K channels (BKCa), inward rectifier K channels (Kir), and tandem two-pore K channels (K2P). The expression and activityies of K channels are altered in many types of diseases. Aberrant function or expression of K channels can be underlying in pathologies such as cardiac arrhythmia, diabetes mellitus, hypertension, preterm birth, preeclampsia, and various types of cancer (Rajkovic et al. 2020). The plant-derived non-toxic polyphenols, such as resveratrol, can alter K channel activity and lead to the desired outcome. This review presents the basic properties, physiological, pathophysiological functions of K channels, and pharmacological roles of resveratrol on the major types of K channels that have been determined in smooth muscle cells.

The generalized transport reaction catalyzed by members of the VIC family is:

cation (out) ⇌ cation (in).

This family belongs to the: VIC Superfamily.

References associated with 1.A.1 family:

and ?. (2012). RETRACTED ARTICLE: Deprotonation of arginines in S4 is involved in NaChBac gating. J Membr Biol. 245(11):761. 22527606
and Abbott GW. (2016). KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation. Gene. 576(1 Pt 1):1-13. 26410412
and Atlas D. (201). The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu Rev Biochem. 82:607-35. 23331239
and Rothberg BS. (2012). The BK channel: a vital link between cellular calcium and electrical signaling. Protein Cell. 3(12):883-92. 22996175
and Thevenod F. (2010). Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals. 23(5):857-75. 20204475
Abbott, G.W. (2017). β Subunits Control the Effects of Human Kv4.3 Potassium Channel Phosphorylation. Front Physiol 8: 646. 28919864
Adams, S.L., G. Chang, M.A. Fouda, S. Kumar, and B. Sun. (2022). Absolute Quantification of Nav1.5 Expression by Targeted Mass Spectrometry. Int J Mol Sci 23:. 35456996
Afonso, M.Q.L., N.J. da Fonseca Júnior, T.G. Miranda, and L. Bleicher. (2022). Naview: A d3.js Based JavaScript Library for Drawing and Annotating Voltage-Gated Sodium Channels Membrane Diagrams. Front Bioinform 2: 774417. 36304314
Agarkova, I., D. Dunigan, J. Gurnon, T. Greiner, J. Barres, G. Thiel, and J.L. Van Etten. (2008). Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes. J. Virol. 82: 12181-12190. 18842725
Aguiar, F., P. Rhana, E. Bloise, C.B. Nunes, A.L. Rodrigues, and E. Ferreira. (2023). T-type Ca2+ channels and their relationship with pre-neoplastic and neoplastic lesions in the human breast. Braz J Med Biol Res 56: e11879. 36790286
Agwa, A.J., L.V. Blomster, D.J. Craik, G.F. King, and C.I. Schroeder. (2018). Efficient Enzymatic Ligation of Inhibitor Cystine Knot Spider Venom Peptides: Using Sortase A To Form Double-Knottins That Probe Voltage-Gated Sodium Channel Na1.7. Bioconjug Chem. [Epub: Ahead of Print] 30148615
Ai, Y., X. Zhang, X. Hu, J. Gao, J. Liu, S. Ou, and J. Wang. (2023). Role of the voltage‑gated sodium channel Nav1.6 in glioma and candidate drugs screening. Int J Mol Med 51:. 37052249
Akopian, A.N., L. Sivilotti, and J.N. Wood. (1996). A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379: 257-262. 8538791
Alexander, S.P.H. and J.A. Peters. (1997). Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci., Elsevier, pp. 76-84.
Almomani, R., M. Sopacua, M. Marchi, M. Ślęczkowska, P. Lindsey, B.T.A. de Greef, J.G.J. Hoeijmakers, E. Salvi, I.S.J. Merkies, M. Ferdousi, R.A. Malik, D. Ziegler, K.W.J. Derks, G. Boenhof, F. Martinelli-Boneschi, D. Cazzato, R. Lombardi, S. Dib-Hajj, S.G. Waxman, H.J.M. Smeets, M.M. Gerrits, C.G. Faber, G. Lauria, and On Behalf Of The Propane Study Group. (2023). Genetic Profiling of Sodium Channels in Diabetic Painful and Painless and Idiopathic Painful and Painless Neuropathies. Int J Mol Sci 24:. 37175987
Altrichter, S., M. Haase, B. Loh, A. Kuhn, and S. Leptihn. (2016). Mechanism of the Spontaneous and Directional Membrane Insertion of a 2-Transmembrane Ion Channel. ACS Chem Biol. [Epub: Ahead of Print] 27960258
Amarouch, M.Y., H. Kurt, L. Delemotte, and H. Abriel. (2020). Biophysical Characterization of Epigallocatechin-3-Gallate Effect on the Cardiac Sodium Channel Na1.5. Molecules 25:. 32085432
Amin, A.S., Y.J. Reckman, E. Arbelo, A.M. Spanjaart, P.G. Postema, R. Tadros, M.W. Tanck, M.P. Van den Berg, A.A.M. Wilde, and H.L. Tan. (2018). SCN5A mutation type and topology are associated with the risk of ventricular arrhythmia by sodium channel blockers. Int J Cardiol. [Epub: Ahead of Print] 29709244
An, F.A., M.R. Bowlby, M. Betty, J. Cao, H. Ling, G. Mendoza, J.W. Hinson, K.I. Mattsson, B.W. Strassle, J.S. Trimmer, and K.J. Rhodes. (2000). Modulation of A-type potassium channels by a family of calcium sensors. Nature 403: 553. 10676964
Anderson, P.A.V. and R.M. Greenberg. (2001). Phylogeny of ion channels: clues to structure and function. Comp. Biochem. Physiol. B 129: 17-18. 11337248
Andersson, J., D. Kleinheinz, U. Ramach, N. Kiesenhofer, A. Ashenden, M. Valtiner, S. Holt, I. Koeper, P.A.M. Schmidpeter, and W. Knoll. (2023). Native Function of the Bacterial Ion Channel SthK in a Sparsely Tethered Lipid Bilayer Membrane Architecture. J Phys Chem B. [Epub: Ahead of Print] 37072125
Andolfo, I., R. Russo, F. Manna, B.E. Shmukler, A. Gambale, G. Vitiello, G. De Rosa, C. Brugnara, S.L. Alper, L.M. Snyder, and A. Iolascon. (2015). Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis). Am J Hematol 90: 921-926. 26178367
Antunes, F.T.T., M.M. Campos, V.P.R. Carvalho, C.A. da Silva Junior, L.A.V. Magno, A.H. de Souza, and M.V. Gomez. (2023). Current Drug Development Overview: Targeting Voltage-Gated Calcium Channels for the Treatment of Pain. Int J Mol Sci 24:. 37298174
Anwar, T. and G. Samudrala. (2018). Bioinformatics Analysis and Functional Prediction of Transmembrane Proteins in. Genes (Basel) 9:. 30332795
Aoki, I., M. Tateyama, T. Shimomura, K. Ihara, Y. Kubo, S. Nakano, and I. Mori. (2018). SLO potassium channels antagonize premature decision making in. Commun Biol 1: 123. 30272003
Aqvist, J. and V. Luzhkov. (2000). Ion permeation mechanism of the potassium channel. Nature 404: 881-884. 10786795
Arrigoni, C., M. Lolicato, D. Shaya, A. Rohaim, F. Findeisen, L.K. Fong, C.M. Colleran, P. Dominik, S.S. Kim, J.P. Schuermann, W.F. DeGrado, M. Grabe, A.A. Kossiakoff, and D.L. Minor, Jr. (2022). Quaternary structure independent folding of voltage-gated ion channel pore domain subunits. Nat Struct Mol Biol 29: 537-548. 35655098
Aryal, P., F. Abd-Wahab, G. Bucci, M.S. Sansom, and S.J. Tucker. (2015). Influence of lipids on the hydrophobic barrier within the pore of the TWIK-1 K2P channel. Channels (Austin) 9: 44-49. 25487004
Aryal, P., V. Jarerattanachat, M.V. Clausen, M. Schewe, C. McClenaghan, L. Argent, L.J. Conrad, Y.Y. Dong, A.C. Pike, E.P. Carpenter, T. Baukrowitz, M.S. Sansom, and S.J. Tucker. (2017). Bilayer-Mediated Structural Transitions Control Mechanosensitivity of the TREK-2 K2P Channel. Structure. [Epub: Ahead of Print] 28392258
Ashmole, I., D.V. Vavoulis, P.J. Stansfeld, P.R. Mehta, J.F. Feng, M.J. Sutcliffe, and P.R. Stanfield. (2009). The response of the tandem pore potassium channel TASK-3 (K(2P)9.1) to voltage: gating at the cytoplasmic mouth. J. Physiol. 587: 4769-4783. 19703964
Atsuta, Y., R.R. Tomizawa, M. Levin, and C.J. Tabin. (2019). L-type voltage-gated Ca channel Ca1.2 regulates chondrogenesis during limb development. Proc. Natl. Acad. Sci. USA 116: 21592-21601. 31591237
Aubert Mucca, M., O. Patat, S. Whalen, L. Arnaud, G. Barcia, J. Buratti, B. Cogné, D. Doummar, C. Karsenty, S. Kenis, E. Leguern, G. Lesca, C. Nava, M. Nizon, A. Piton, S. Valence, L. Villard, S. Weckhuysen, B. Keren, and C. Mignot. (2022). Patients with -related intellectual disability without distinctive features of Zimmermann-Laband/Temple-Baraitser syndrome. J Med Genet 59: 505-510. 33811134
Azeem, F., R. Zameer, M.A. Rehman Rashid, I. Rasul, S. Ul-Allah, M.H. Siddique, S. Fiaz, A. Raza, A. Younas, A. Rasool, M.A. Ali, S. Anwar, and M.H. Siddiqui. (2021). Genome-wide analysis of potassium transport genes in Gossypium raimondii suggest a role of GrHAK/KUP/KT8, GrAKT2.1 and GrAKT1.1 in response to abiotic stress. Plant Physiol. Biochem 170: 110-122. [Epub: Ahead of Print] 34864561
Azzarà, A., I. Cassano, C. Lintas, F. Pilato, F. Capone, V. Di Lazzaro, and F. Gurrieri. (2023). Melkersson-Rosenthal Syndrome and Migraine: A New Phenotype Associated with Variants? Genes (Basel) 14:. 37510386
Bachnoff, N., M. Cohen-Kutner, M. Trus, and D. Atlas. (2013). Intra-membrane Signaling Between the Voltage-Gated Ca2+-Channel and Cysteine Residues of Syntaxin 1A Coordinates Synchronous Release. Sci Rep 3: 1620. 23567899
Bagal, S.K., B.E. Marron, R.M. Owen, R.I. Storer, and N.A. Swain. (2015). Voltage gated sodium channels as drug discovery targets. Channels (Austin) 9: 360-366. 26646477
Bagnéris, C., P.G. Decaen, B.A. Hall, C.E. Naylor, D.E. Clapham, C.W. Kay, and B.A. Wallace. (2013). Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat Commun 4: 2465. 24051986
Bagriantsev, S.N., R. Peyronnet, K.A. Clark, E. Honoré, and D.L. Minor, Jr. (2011). Multiple modalities converge on a common gate to control K2P channel function. EMBO. J. 30: 3594-3606. 21765396
Bai, H.W., S. Eom, H.D. Yeom, K.V.A. Nguyen, J. Lee, S.O. Sohn, and J.H. Lee. (2018). Molecular basis involved in the blocking effect of antidepressant metergoline on C-type inactivation of Kv1.4 channel. Neuropharmacology 146: 65-73. [Epub: Ahead of Print] 30465811
Baig, A.M., J. Iqbal, and N.A. Khan. (2013). In vitro efficacies of clinically available drugs against growth and viability of an Acanthamoeba castellanii keratitis isolate belonging to the T4 genotype. Antimicrob. Agents Chemother. 57: 3561-3567. 23669391
Baker, K.A., C. Tzitzilonis, W. Kwiatkowski, S. Choe, and R. Riek. (2007). Conformational dynamics of the KcsA potassium channel governs gating properties. Nat Struct Mol Biol 14: 1089-1095. 17922011
Baker, M.R., A.S. Lee, and A.M. Rajadhyaksha. (2023). L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development. Channels (Austin) 17: 2176984. 36803254
Balagué, C., B. Lin, C. Alcon, G. Flottes, S. Malmström, C. Köhler, G. Neuhaus, G. Pelletier, F. Gaymard, and D. Roby. (2003). HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15: 365-379. 12566578
Balajthy, A., P. Hajdu, G. Panyi, and Z. Varga. (2017). Sterol Regulation of Voltage-Gated K+ Channels. Curr Top Membr 80: 255-292. 28863820
Balduini, A., C. Fava, C.A. Di Buduo, V. Abbonante, A. Meneguzzi, P.M. Soprano, F. Taus, M. Castelli, A. Giontella, M. Dovizio, S. Tacconelli, P. Patrignani, and P. Minuz. (2021). Expression and functional characterization of the large-conductance calcium and voltage-activated potassium channel K 1.1 in megakaryocytes and platelets. J Thromb Haemost. [Epub: Ahead of Print] 33590615
Balss, J., P. Papatheodorou, M. Mehmel, D. Baumeister, B. Hertel, N. Delaroque, F.C. Chatelain, D.L. Minor, Jr, J.L. Van Etten, J. Rassow, A. Moroni, and G. Thiel. (2008). Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proc. Natl. Acad. Sci. USA 105: 12313-12318. 18719119
Bang, H., Y. Kim, and D. Kim. (2000). TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J. Biol. Chem. 275: 17412-17419. 10747911
Barber AF., Carnevale V., Raju SG., Amaral C., Treptow W. and Klein ML. (2012). Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. Biochim Biophys Acta. 1818(9):2120-5. 22579978
Barmeyer, C., C. Rahner, Y. Yang, F.J. Sigworth, H.J. Binder, and V.M. Rajendran. (2010). Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon. Am. J. Physiol. Cell Physiol. 299: C251-263. 20445171
Barret, D.C.A., D. Schuster, M.J. Rodrigues, A. Leitner, P. Picotti, G.F.X. Schertler, U.B. Kaupp, V.M. Korkhov, and J. Marino. (2023). Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel. Proc. Natl. Acad. Sci. USA 120: e2300309120. 37011209
Barros, F., L.A. Pardo, P. Domínguez, L.M. Sierra, and P. de la Peña. (2019). New Structures and Gating of Voltage-Dependent Potassium (Kv) Channels and Their Relatives: A Multi-Domain and Dynamic Question. Int J Mol Sci 20:. 30634573
Barros, F., P. de la Peña, P. Domínguez, L.M. Sierra, and L.A. Pardo. (2020). The EAG Voltage-Dependent K Channel Subfamily: Similarities and Differences in Structural Organization and Gating. Front Pharmacol 11: 411. 32351384
Bartolomé-Martín, D., I. Ibáñez, D. Piniella, E. Martínez-Blanco, S.G. Pelaz, and F. Zafra. (2019). Identification of potassium channel proteins Kv7.2/7.3 as common partners of the dopamine and glutamate transporters DAT and GLT-1. Neuropharmacology. [Epub: Ahead of Print] 30885609
Bassetto, C.A.Z., Jr, J.L. Carvalho-de-Souza, and F. Bezanilla. (2019). Metal Bridge in S4 Segment Supports Helix Transition in Shaker Channel. Biophys. J. [Epub: Ahead of Print] 31635788
Basu, D. and E.S. Haswell. (2017). Plant mechanosensitive ion channels: an ocean of possibilities. Curr. Opin. Plant Biol. 40: 43-48. 28750206
Bauer, C.K. and J.R. Schwarz. (2018). Ether-à-go-go K channels: effective modulators of neuronal excitability. J. Physiol. 596: 769-783. 29333676
Bauer, C.K., P.E. Schneeberger, F. Kortüm, J. Altmüller, F. Santos-Simarro, L. Baker, J. Keller-Ramey, S.M. White, P.M. Campeau, K.W. Gripp, and K. Kutsche. (2019). Gain-of-Function Mutations in KCNN3 Encoding the Small-Conductance Ca-Activated K Channel SK3 Cause Zimmermann-Laband Syndrome. Am J Hum Genet 104: 1139-1157. 31155282
Becchetti, A., S. Crescioli, F. Zanieri, G. Petroni, R. Mercatelli, S. Coppola, L. Gasparoli, M. D'Amico, S. Pillozzi, O. Crociani, M. Stefanini, A. Fiore, L. Carraresi, V. Morello, S. Manoli, M.F. Brizzi, D. Ricci, M. Rinaldi, A. Masi, T. Schmidt, F. Quercioli, P. Defilippi, and A. Arcangeli. (2017). The conformational state of hERG1 channels determines integrin association, downstream signaling, and cancer progression. Sci Signal 10:. 28377405
Becker, C., D. Geiger, B. Dunkel, A. Roller, A. Bertl, A. Latz, A. Carpaneto, P. Dietrich, M.R.G. Roelfsema, C. Voelker, D. Schmidt, B. Mueller-Roeber, K. Czempinski, and R. Hedrich. (2004). AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proc. Natl. Acad. Sci. USA 101: 15621-15626. 15505206
Behringer, E.J. (2023). Impact of aging on vascular ion channels: perspectives and knowledge gaps across major organ systems. Am. J. Physiol. Heart Circ Physiol 325: H1012-H1038. 37624095
Behringer, E.J. and M.A. Hakim. (2019). Functional Interaction among K and TRP Channels for Cardiovascular Physiology: Modern Perspectives on Aging and Chronic Disease. Int J Mol Sci 20:. 30893836
Bell, D.C., H. Yao, R.C. Saenger, J.H. Riley, and S.A. Siegelbaum. (2004). Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels. J Gen Physiol 123: 5-19. 14676285
Ben Mahmoud, A., R. Ben Mansour, F. Driss, S. Baklouti-Gargouri, O. Siala, E. Mkaouar-Rebai, and F. Fakhfakh. (2015). Evaluation of the effect of c.2946+1G>T mutation on splicing in the SCN1A gene. Comput Biol Chem 54: 44-48. 25590135
Ben Soussia, I., S. El Mouridi, D. Kang, A. Leclercq-Blondel, L. Khoubza, P. Tardy, N. Zariohi, M. Gendrel, F. Lesage, E.J. Kim, D. Bichet, O. Andrini, and T. Boulin. (2019). Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels. Nat Commun 10: 787. 30770809
Bennett, V., and J. Healy. (2008). Being there: cellular targeting of voltage-gated sodium channels in the heart. J. Cell. Biol. 180: 13-15. 18180365
Berkefeld, H. and B. Fakler. (2013). Ligand-Gating by Ca2+ Is Rate Limiting for Physiological Operation of BKCa Channels. J. Neurosci. 33: 7358-7367. 23616542
Berkefeld, H., C.A. Sailer, W. Bildl, V. Rohde, J.O. Thumfart, S. Eble, N. Klugbauer, E. Reisinger, J. Bischofberger, D. Oliver, H.G. Knaus, U. Schulte, and B. Fakler. (2006). BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314: 615-620. 17068255
Bertaccini EJ., Dickinson R., Trudell JR. and Franks NP. (2014). Molecular modeling of a tandem two pore domain potassium channel reveals a putative binding site for general anesthetics. ACS Chem Neurosci. 5(12):1246-52. 25340635
Bertl, A., J. Ramos, J. Ludwig, H. Lichtenberg-Fraté, J. Reid, H. Bihler, F. Calero, P. Martinez, and P.O. Ljungdahl. (2003). Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol. Microbiol. 47: 767-780. 12535075
Beurg, M., E.T. Schwalbach, and R. Fettiplace. (2024). LHFPL5 is a key element in force transmission from the tip link to the hair cell mechanotransducer channel. Proc. Natl. Acad. Sci. USA 121: e2318270121. 38194445
Bezanilla, F. (2000). The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80: 555-592. 10747201
Bezanilla, F. (2008). How membrane proteins sense voltage. Nat Rev Mol. Cell Biol. 9: 323-332. 18354422
Bezine, M., S. Maatoug, R. Ben Khalifa, M. Debbabi, A. Zarrouk, Y. Wang, W.J. Griffiths, T. Nury, M. Samadi, A. Vejux, J. de Sèze, T. Moreau, R. Kharrat, M. El Ayeb, and G. Lizard. (2018). Modulation of Kv3.1b potassium channel level and intracellular potassium concentration in 158N murine oligodendrocytes and BV-2 murine microglial cells treated with 7-ketocholesterol, 24S-hydroxycholesterol or tetracosanoic acid (C24:0). Biochimie. [Epub: Ahead of Print] 29462682
Bianchi L., S.M. Kwok, M. Driscoll, F. Sesti. (2003). A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans. J Biol. Chem. 278:12415-12424. 12533541
Bibollet, H., A. Kramer, R.A. Bannister, and E.O. Hernández-Ochoa. (2023). Advances in Ca1.1 gating: New insights into permeation and voltage-sensing mechanisms. Channels (Austin) 17: 2167569. 36642864
Biel M., S. Michalakis. (2007). Function and dysfunction of CNG channels: insights from channelopathies and mouse models. Mol Neurobiol. 35: 266-277. 17917115
Biel, M., C. Wahl-Schott, S. Michalakis, and X. Zong. (2009). Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89: 847-885. 19584315
Bignucolo, O. and S. Bernèche. (2020). The Voltage-Dependent Deactivation of the KvAP Channel Involves the Breakage of Its S4 Helix. Front Mol Biosci 7: 162. 32850956
Biswas, S., I. Deschênes, D. Disilvestre, Y. Tian, V.L. Halperin, and G.F. Tomaselli. (2008). Calmodulin regulation of Nav1.4 current: role of binding to the carboxyl terminus. J. Gen. Physiol. 131: 197-209. 18270170
Blasic, J.R., D.L. Worcester, K. Gawrisch, P. Gurnev, and M. Mihailescu. (2015). Pore Hydration States of KcsA Potassium Channels in Membranes. J. Biol. Chem. 290: 26765-26775. 26370089
Bleakley, L.E. and C.A. Reid. (2023). HCN1 epilepsy: From genetics and mechanisms to precision therapies. J Neurochem. [Epub: Ahead of Print] 37565989
Bocksteins, E., N. Ottschytsch, J.P. Timmermans, A.J. Labro, and D.J. Snyders. (2011). Functional interactions between residues in the S1, S4, and S5 domains of Kv2.1. Eur Biophys. J. 40: 783-793. 21455829
Boonamnaj, P., R.B. Pandey, and P. Sompornpisut. (2021). Interaction fingerprint of transmembrane segments in voltage sensor domains. Biophys Chem 277: 106649. [Epub: Ahead of Print] 34147849
Borger C., Schunke S., Lecher J., Stoldt M., Winkhaus F., Kaupp UB. and Willbold D. (2015). Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2. Biomol NMR Assign. 9(2):243-6. 25324217
Börjesson, S.I. and F. Elinder. (2011). An electrostatic potassium channel opener targeting the final voltage sensor transition. J Gen Physiol 137: 563-577. 21624947
Bosmans, F., M. Puopolo, M.F. Martin-Eauclaire, B.P. Bean, and K.J. Swartz. (2011). Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors. J Gen Physiol 138: 59-72. 21670206
Boukhabza, M., J. El Hilaly, N. Attiya, A. El-Haidani, Y. Filali-Zegzouti, D. Mazouzi, and M.Y. Amarouch. (2016). In Silico Evaluation of the Potential Antiarrhythmic Effect of Epigallocatechin-3-Gallate on Cardiac Channelopathies. Comput Math Methods Med 2016: 7861653. 27882075
Boulton, S., M. Akimoto, S. Akbarizadeh, and G. Melacini. (2017). Free Energy Landscape Remodeling of the Cardiac Pacemaker Channel Explains the Molecular Basis of Familial Sinus Bradycardia. J. Biol. Chem. [Epub: Ahead of Print] 28174302
Brailoiu, E., R. Hooper, X. Cai, G.C. Brailoiu, M.V. Keebler, N.J. Dun, J.S. Marchant, and S. Patel. (2010). An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J. Biol. Chem. 285: 2897-2901. 19940116
Brams M., Kusch J., Spurny R., Benndorf K. and Ulens C. (2014). Family of prokaryote cyclic nucleotide-modulated ion channels. Proc Natl Acad Sci U S A. 111(21):7855-60. 24821777
Bramswig, N.C., A.M. Bertoli-Avella, B. Albrecht, A.I. Al Aqeel, A. Alhashem, N. Al-Sannaa, M. Bah, K. Bröhl, C. Depienne, N. Dorison, D. Doummar, N. Ehmke, H.M. Elbendary, S. Gorokhova, D. Héron, D. Horn, K. James, B. Keren, A. Kuechler, S. Ismail, M.Y. Issa, I. Marey, M. Mayer, J. McEvoy-Venneri, A. Megarbane, C. Mignot, S. Mohamed, C. Nava, N. Philip, C. Ravix, A. Rolfs, A.A. Sadek, L. Segebrecht, V. Stanley, C. Trautman, S. Valence, L. Villard, T. Wieland, H. Engels, T.M. Strom, M.S. Zaki, J.G. Gleeson, H.J. Lüdecke, P. Bauer, and D. Wieczorek. (2018). Genetic variants in components of the NALCN-UNC80-UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Hum Genet 137: 753-768. 30167850
Brennecke, J.T. and B.L. de Groot. (2018). Mechanism of Mechanosensitive Gating of the TREK-2 Potassium Channel. Biophys. J. 114: 1336-1343. 29590591
Brettmann, J.B., D. Urusova, M. Tonelli, J.R. Silva, and K.A. Henzler-Wildman. (2015). Role of protein dynamics in ion selectivity and allosteric coupling in the NaK channel. Proc. Natl. Acad. Sci. USA 112: 15366-15371. 26621745
Brohawn, S.G., E.B. Campbell, and R. MacKinnon. (2014). Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516: 126-130. 25471887
Brohawn, S.G., J. del Mármol, and R. MacKinnon. (2012). Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335: 436-441. 22282805
Brontein-Sitton, N. (2006). The ether-a-go-go Related Gene (erg) Voltage-Gated K+ Channels: A Common Structure with Uncommon Characteristics. Modulator. 21: 13-15.
Bruening-Wright, A., F. Elinder, and H.P. Larsson. (2007). Kinetic relationship between the voltage sensor and the activation gate in spHCN channels. J Gen Physiol 130: 71-81. 17591986
Bruening-Wright, A., W.S. Lee, J.P. Adelman, and J. Maylie. (2007). Evidence for a Deep Pore Activation Gate in Small Conductance Ca2+-activated K+ Channels. J. Gen. Physiol. 130(6):601-610. 17998394
Brugada, P. (2023). Brugada Syndrome: 30 Years of Scientific Ventures. Arq Bras Cardiol 120: e20220289. 36946855
Buraei, Z. and J. Yang. (2010). The ß subunit of voltage-gated Ca2+ channels. Physiol. Rev. 90: 1461-1506. 20959621
Burashnikov, A., H. Barajas-Martinez, D. Hu, V.M. Robinson, M. Grunnet, and C. Antzelevitch. (2020). The SK Channel Inhibitors NS8593 and UCL1684 Prevent the Development of Atrial Fibrillation via Atrial-selective Inhibition of Sodium Channel Activity. J Cardiovasc Pharmacol. [Epub: Ahead of Print] 32453071
Bustos, D., M. Bedoya, D. Ramírez, G. Concha, L. Zúñiga, N. Decher, E.W. Hernández-Rodríguez, F.V. Sepúlveda, L. Martínez, and W. González. (2020). Elucidating the Structural Basis of the Intracellular pH Sensing Mechanism of TASK-2 KP Channels. Int J Mol Sci 21:. 31947679
Butterwick, J.A. and R. MacKinnon. (2010). Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP. J. Mol. Biol. 403: 591-606. 20851706
Bystroff, C. (2018). Intramembranal disulfide cross-linking elucidates the super-quaternary structure of mammalian CatSpers. Reprod Biol. [Epub: Ahead of Print] 29371110
Cai, K., H. Gao, X. Wu, S. Zhang, Z. Han, X. Chen, G. Zhang, and F. Zeng. (2019). The Ability to Regulate Transmembrane Potassium Transport in Root Is Critical for Drought Tolerance in Barley. Int J Mol Sci 20:. 31443572
Cai, S.Q., L. Hernandez, Y. Wang, K.H. Park, and F. Sesti. (2005). MPS-1 is a K+ channel β-subunit and a serine/threonine kinase. Nat Neurosci 8: 1503-1509. 16222231
Calderon-Rivera, A., S. Loya-Lopez, K. Gomez, and R. Khanna. (2022). Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels. Channels (Austin) 16: 198-215. 36017978
Calise, A.C., J. Carter, and T. Litvinchuk. (2023). An Instance of Hypokalemic Periodic Paralysis in Adolescent Brothers: A Case Report. Cureus 15: e42082. 37601992
Calisto, F., F.M. Sousa, F.V. Sena, P.N. Refojo, and M.M. Pereira. (2021). Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 121: 1804-1844. 33398986
Cang, C., B. Bekele, and D. Ren. (2014). The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat Chem Biol 10: 463-469. 24776928
Cang, C., Y. Zhou, B. Navarro, Y.J. Seo, K. Aranda, L. Shi, S. Battaglia-Hsu, I. Nissim, D.E. Clapham, and D. Ren. (2013). mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 152: 778-790. 23394946
Canto-Bustos, M., E. Loeza-Alcocer, R. González-Ramírez, M.A. Gandini, R. Delgado-Lezama, and R. Felix. (2014). Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle. PLoS One 9: e108187. 25255145
Capera, J., C. Serrano-Novillo, M. Navarro-Pérez, S. Cassinelli, and A. Felipe. (2019). The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement. Int J Mol Sci 20:. 30744118
Capera, J., M. Navarro-Pérez, A.S. Moen, I. Szabó, and A. Felipe. (2022). The Mitochondrial Routing of the Kv1.3 Channel. Front Oncol 12: 865686. 35402277
Carkci, S., E.O. Etem, S. Ozaydin, A. Karakeci, A. Tektemur, T. Ozan, and I. Orhan. (2017). Ion channel gene expressions in infertile men: A case-control study. Int J Reprod Biomed (Yazd) 15: 749-756. 29492471
Carraretto, L., E. Formentin, E. Teardo, V. Checchetto, M. Tomizioli, T. Morosinotto, G.M. Giacometti, G. Finazzi, and I. Szabó. (2013). A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science 342: 114-118. 24009357
Carrasquel-Ursulaez, W., I. Segura, I. Díaz-Franulic, F. Echeverría, Y. Lorenzo-Ceballos, N. Espinoza, M. Rojas, J.A. Garate, E. Perozo, O. Alvarez, F.D. Gonzalez-Nilo, and R. Latorre. (2022). Mechanism of voltage sensing in Ca- and voltage-activated K (BK) channels. Proc. Natl. Acad. Sci. USA 119: e2204620119. 35704760
Casida, J.E. and K.A. Durkin. (2013). Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58: 99-117. 23317040
Castellano, A., M.D. Chiara, B. Mellström, A. Molina, F. Monje, J.R. Naranjo, and J. López-Barneo. (1997). Identification and functional characterization of a K+ channel α-subunit with regulatory properties specific to brain. J. Neurosci. 17: 4652-4661. 9169526
Catacuzzeno, L. and F. Franciolini. (2022). The 70-year search for the voltage-sensing mechanism of ion channels. J. Physiol. [Epub: Ahead of Print] 35665931
Catterall, W.A. (2010). Ion channel voltage sensors: structure, function, and pathophysiology. Neuron. 67: 915-928. 20869590
Catterall, W.A., M.J. Lenaeus, and T.M. Gamal El-Din. (2020). Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels. Annu Rev Pharmacol Toxicol 60: 133-154. 31537174
Catterall, W.A., S. Dib-Hajj, M.H. Meisler, and D. Pietrobon. (2008). Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J. Neurosci. 28: 11768-11777. 19005038
Cavinder, B. and F. Trail. (2012). Role of Fig1, a component of the low-affinity calcium uptake system, in growth and sexual development of filamentous fungi. Eukaryot. Cell. 11: 978-988. 22635922
Cha, A., G.E. Snyder, P.R. Selvin, and F. Bezanilla. (1999). Atomic scale movement of the voltage sensing region in a potassium channel measured via spectroscopy. Nature 402: 809-813. 10617201
Chahine, M., S. Pilote, V. Pouliot, H. Takami, and C. Sato. (2004). Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing. J. Membr. Biol. 201: 9-24. 15635808
Chancey, J.H., P.E. Shockett, and J.P. O''Reilly. (2007). Relative resistance to slow inactivation of human cardiac Na+ channel hNav1.5 is reversed by lysine or glutamine substitution at V930 in D2-S6. Am. J. Physiol. Cell Physiol. 293: C1895-1905. 17928536
Chanda, B., and F. Bezanilla (2008). A common pathway for charge transport through voltage-sensing domains. Neuron 57: 345-51. 18255028
Chang, S.S., P.M. Dijkman, S.A. Wiessing, and M. Kudryashev. (2023). Determining the structure of the bacterial voltage-gated sodium channel NaChBac embedded in liposomes by cryo electron tomography and subtomogram averaging. Sci Rep 13: 11523. 37460541
Chang, X. and Y. Dong. (2021). CACNA1C is a prognostic predictor for patients with ovarian cancer. J Ovarian Res 14: 88. 34210324
Charalambous, K. and B.A. Wallace. (2011). NaChBac: The Long Lost Sodium Channel Ancestor. Biochemistry 50: 6742-6752. 21770445
Charpentier, M., J. Sun, T.V. Martins, G.V. Radhakrishnan, K. Findlay, E. Soumpourou, J. Thouin, A.A. Véry, D. Sanders, R.J. Morris, and G.E. Oldroyd. (2016). Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352: 1102-1105. 27230377
Charpentier, M., R. Bredemeier, G. Wanner, N. Takeda, E. Schleiff, and M. Parniske. (2008). Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20: 3467-3479. 19106374
Chartrand, E., A.A. Arnold, A. Gravel, S. Jenna, and I. Marcotte. (2010). Potential role of the membrane in hERG channel functioning and drug-induced long QT syndrome. Biochim. Biophys. Acta. 1798: 1651-1662. 20510171
Chauhan, D.S., D.K. Swain, N. Shah, H.P. Yadav, U.P. Nakade, V.K. Singh, R. Nigam, S. Yadav, and S.K. Garg. (2017). Functional and molecular characterization of voltage gated sodium channel Nav 1.8 in bull spermatozoa. Theriogenology 90: 210-218. 28166971
Checchetto, V., A. Segalla, G. Allorent, N. La Rocca, L. Leanza, G.M. Giacometti, N. Uozumi, G. Finazzi, E. Bergantino, and I. Szabò. (2012). Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proc. Natl. Acad. Sci. USA 109: 11043-11048. 22711813
Checchetto, V., E. Formentin, L. Carraretto, A. Segalla, G.M. Giacometti, I. Szabo, and E. Bergantino. (2013). Functional characterization and determination of the physiological role of a calcium-dependent potassium channel from cyanobacteria. Plant Physiol. 162: 953-964. 23640756
Checchetto, V., E. Teardo, L. Carraretto, E. Formentin, E. Bergantino, G.M. Giacometti, and I. Szabo. (2013). Regulation of photosynthesis by ion channels in cyanobacteria and higher plants. Biophys Chem 182: 51-57. 23891570
Chemin, J., A. Patel, F. Duprat, M. Zanzouri, M. Lazdunski, and E. Honoré. (2005). Lysophosphatidic acid-operated K+ channels. J. Biol. Chem. 280: 4415-4421. 15572365
Chemin, J., C. Girard, F. Duprat, F. Lesage, G. Romey, and M. Lazdunski. (2003). Mechanisms underlying excitatory effects of group 1 metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J. 22: 5403-5411. 14532113
Chen, B., P. Liu, H. Zhan, and Z.W. Wang. (2011). Dystrobrevin controls neurotransmitter release and muscle Ca2+ transients by localizing BK channels in Caenorhabditis elegans. J. Neurosci. 31: 17338-17347. 22131396
Chen, G.L., J. Li, J. Zhang, and B. Zeng. (2023). To Be or Not to Be an Ion Channel: Cryo-EM Structures Have a Say. Cells 12:. 37508534
Chen, H., J. Kronengold, Y. Yan, V.R. Gazula, M.R. Brown, L. Ma, G. Ferreira, Y. Yang, A. Bhattacharjee, F.J. Sigworth, L. Salkoff, and L.K. Kaczmarek. (2009). The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J. Neurosci. 29: 5654-5665. 19403831
Chen, H., J. Pan, D.M. Gandhi, C. Dockendorff, Q. Cui, B. Chanda, and K.A. Henzler-Wildman. (2019). NMR Structural Analysis of Isolated Shaker Voltage-Sensing Domain in LPPG Micelles. Biophys. J. 117: 388-398. 31301804
Chen, J., S.C. Cassar, D. Zhang, and M. Gopalakrishnan. (2005). A novel potassium channel encoded by Ectocarpus siliculosus virus. Biochem. Biophys. Res. Commun. 326: 887-893. 15607752
Chen, J., Z. Liu, J.P. Creagh, R. Zheng, and T.V. McDonald. (2019). Physical and Functional Interaction Sites in Cytoplasmic Domains of KCNQ1 and KCNE1 Channel Subunits. Am. J. Physiol. Heart Circ Physiol. [Epub: Ahead of Print] 31834838
Chen, L.L., M. Naesström, M. Halvorsen, A. Fytagoridis, D. Mataix-Cols, C. Rück, J.J. Crowley, and D. Pascal. (2023). Genomics of severe and treatment-resistant obsessive-compulsive disorder treated with deep brain stimulation: a preliminary investigation. medRxiv. 37131580
Chen, M., D. Yin, S. Guo, D.Z. Xu, Z. Wang, Z. Chen, M. Rubart-von der Lohe, S.F. Lin, T.H. Everett, J.N. Weiss, and P.S. Chen. (2018). Sex-Specific Activation of SK Current by Isoproterenol Facilitates Action Potential Triangulation and Arrhythmogenesis in Rabbit Ventricles. J. Physiol. [Epub: Ahead of Print] 29917243
Chen, M., S. Li, M. Hao, J. Chen, Z. Zhao, S. Hong, J. Min, J. Tang, M. Hu, and L. Hong. (2020). T-type calcium channel blockade induces apoptosis in C2C12 myotubes and skeletal muscle via endoplasmic reticulum stress activation. FEBS Open Bio 10: 2122-2136. 32865339
Chen, X., M.Y. Ruan, and S.Q. Cai. (2015). KChIP-like auxiliary subunits of Kv4 channels regulate excitability of muscle cells and control male turning behavior during mating in Caenorhabditis elegans. J. Neurosci. 35: 1880-1891. 25653349
Chen, X., Q. Wang, F. Ni, and J. Ma. (2010). Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc. Natl. Acad. Sci. USA 107: 11352-11357. 20534430
Cherki, R., L. Luques, Y. Anis, and A. Meir. (2006). Ion Channels in Endocrine Pancreatic Cell and their Role in Diabetes. Modulator. 21: 16-21.
Cho, S.W., K.Y. Choi, and C.S. Park. (2004). A new putative cyclic nucleotide-gated channel gene, cng-3, is critical for thermotolerance in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 325: 525-531. 15530424
Cho, T., A. Ishii-Kato, Y. Fukata, Y. Nakayama, K. Iida, M. Fukata, and H. Iida. (2016). Coupling of a voltage-gated Ca2+ channel homologue with a plasma membrane H+ -ATPase in yeast. Genes Cells. [Epub: Ahead of Print] 27935186
Choi, S.W., K.S. Kim, D.H. Shin, H.Y. Yoo, H. Choe, T.H. Ko, J.B. Youm, W.K. Kim, Y.H. Zhang, and S.J. Kim. (2013). Class 3 inhibition of hERG K+ channel by caffeic acid phenethyl ester (CAPE) and curcumin. Pflugers Arch 465: 1121-1134. 23440458
Chotoo, C.K., G.A. Silverman, D.C. Devor, and C.J. Luke. (2013). A small conductance calcium-activated K+ channel in C. elegans, KCNL-2, plays a role in the regulation of the rate of egg-laying. PLoS One 8: e75869. 24040423
Chowdhury, S., B.W. Jarecki, and B. Chanda. (2014). A molecular framework for temperature-dependent gating of ion channels. Cell 158: 1148-1158. 25156949
Chung, J.J., B. Navarro, G. Krapivinsky, L. Krapivinsky, and D.E. Clapham. (2011). A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat Commun 2: 153. 21224844
Churamani, D., R. Hooper, E. Brailoiu, and S. Patel. (2012). Domain assembly of NAADP-gated two-pore channels. Biochem. J. 441: 317-323. 21992073
Cirelli, C., D. Bushey, S. Hill, R. Huber, R. Kreber, B. Ganetzky, and G. Tononi. (2005). Reduced sleep in Drosophila Shaker mutants. Nature 434: 1087-1092. 15858564
Cisco, L.A., M.T. Sipple, K.M. Edwards, C.A. Thornton, and J.D. Lueck. (2024). Verapamil mitigates chloride and calcium bi-channelopathy in a myotonic dystrophy mouse model. J Clin Invest 134:. 38165038
Clapham, D.E. (1999). Unlocking family secrets: K+ channel transmembrane domains. Cell 97: 547-550. 10367883
Clark, M.D., G.F. Contreras, R. Shen, and E. Perozo. (2020). Electromechanical coupling in the hyperpolarization-activated K channel KAT1. Nature. [Epub: Ahead of Print] 32461693
Clayton, G.M., S. Altieri, L. Heginbotham, V.M. Unger, and J.H. Morais-Cabral. (2008). Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc. Natl. Acad. Sci. USA 105: 1511-1515. 18216238
Cohen, A., Y. Ben-Abu, S. Hen, and N. Zilberberg. (2008). A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J. Biol. Chem. 283: 19448-19455. 18474599
Cohen, L., Y. Moran, A. Sharon, D. Segal, D. Gordon, and M. Gurevitz. (2009). Drosomycin, an innate immunity peptide of Drosophila melanogaster, interacts with the fly voltage-gated sodium channel. J. Biol. Chem. 284: 23558-23563. 19574227
Cohen-Kutner, M., D. Nachmanni, and D. Atlas. (2010). CaV2.1 (P/Q channel) interaction with synaptic proteins is essential for depolarization-evoked release. Channels (Austin) 4: 266-277. 20495360
Colosimo, E., A. Gambardella, M. Mantegazza, A. Labate, R. Rusconi, E. Schiavon, F. Annesi, R.R. Cassulini, S. Carrideo, R. Chifari, M.P. Canevini, R. Canger, S. Franceschetti, G. Annesi, E. Wanke, and A. Quattrone. (2007). Electroclinical features of a family with simple febrile seizures and temporal lobe epilepsy associated with SCN1A loss-of-function mutation. Epilepsia 48: 1691-1696. 17565594
Cong, B., G. Han, X.H. Huang, S.H. Liu, C.L. Liu, X.Z. Lin, P.Q. He, and H. Gasaino. (2009). Molecular cloning and tissue expression patterns of a small conductance calcium-activated potassium channel gene in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol 27: 221-229. 19481607
Coskun, C. and N. Purali. (2016). Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish. Invert Neurosci 16: 2. 27032955
Costa, B. and N. Vale. (2023). Understanding Lamotrigine''s Role in the CNS and Possible Future Evolution. Int J Mol Sci 24:. 37047022
Costi, S., L.S. Morris, K.A. Kirkwood, M. Hoch, M. Corniquel, B. Vo-Le, T. Iqbal, N. Chadha, D.A. Pizzagalli, A. Whitton, L. Bevilacqua, M.K. Jha, S. Ursu, A.C. Swann, K.A. Collins, R. Salas, E. Bagiella, M.K. Parides, E.R. Stern, D.V. Iosifescu, M.H. Han, S.J. Mathew, and J.W. Murrough. (2021). Impact of the KCNQ2/3 Channel Opener Ezogabine on Reward Circuit Activity and Clinical Symptoms in Depression: Results From a Randomized Controlled Trial. Am J Psychiatry 178: 437-446. 33653118
Coutelier, M., I. Blesneac, A. Monteil, M.L. Monin, K. Ando, E. Mundwiller, A. Brusco, I. Le Ber, M. Anheim, A. Castrioto, C. Duyckaerts, A. Brice, A. Durr, P. Lory, and G. Stevanin. (2015). A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia. Am J Hum Genet 97: 726-737. 26456284
Cowgill, J. and B. Chanda. (2023). Charge-voltage curves of Shaker potassium channel are not hysteretic at steady state. J Gen Physiol 155:. 36692860
Cox, J.J., F. Reimann, A.K. Nicholas, G. Thornton, E. Roberts, K. Springell, G. Karbani, H. Jafri, J. Mannan, Y. Raashid, L. Al-Gazali, H. Hamamy, E.M. Valente, S. Gorman, R. Williams, D.P. McHale, J.N. Wood, F.M. Gribble, and C.G. Woods. (2006). An SCN9A channelopathy causes congenital inability to experience pain. Nature 444: 894-898. 17167479
Cregg, R., A. Momin, F. Rugiero, J.N. Wood, and J. Zhao. (2010). Pain channelopathies. J. Physiol. 588: 1897-1904. 20142270
Cribbs L.L., B.L. Martin, E.A. Schroder, B.B. Keller, B.P. Delisle, J. Satin. (2001). Identification of the t-type calcium channel (Cav3.1d) in developing mouse heart. Circ. Res. 88: 403-407. 11230107
Cuello, L.G., D.M. Cortes, and E. Perozo. (2004). Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306: 491-495. 15486302
Cuello, L.G., V. Jogini, D.M. Cortes, and E. Perozo. (2010). Structural mechanism of C-type inactivation in K+ channels. Nature 466: 203-208. 20613835
Cui, J. (2010). BK-type calcium-activated potassium channels: coupling of metal ions and voltage sensing. J. Physiol. 588: 4651-4658. 20660558
Cui, S., K. Hayashi, I. Kobayashi, K. Hosomichi, A. Nomura, R. Teramoto, K. Usuda, H. Okada, Y. Deng, J. Kobayashi-Sun, T. Nishikawa, H. Furusho, T. Saito, H. Hirase, K. Ohta, M. Fujimoto, Y. Horita, T. Kusayama, T. Tsuda, H. Tada, T. Kato, S. Usui, K. Sakata, N. Fujino, A. Tajima, M. Yamagishi, and M. Takamura. (2023). The utility of zebrafish cardiac arrhythmia model to predict the pathogenicity of KCNQ1 variants. J Mol. Cell Cardiol 177: 50-61. 36898499
Cui, Y., J. Wang, Y. Bai, L. Ban, J. Ren, Q. Shang, and W. Li. (2023). Identification of in and Screening of Related Resistance Genes after Infection. Biology (Basel) 12:. 36979131
Czempinski K., S. Zimmermann, T. Ehrhardt, B. Muller-Rober. (1997). New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J. 16:2565-75. 9184204
Czirják, G., D. Vuity, and P. Enyedi. (2008). Phosphorylation-dependent binding of 14-3-3 proteins controls TRESK regulation. J. Biol. Chem. 283: 15672-15680. 18397886
Czirjak, G., Z.E. Toth, and P. Enyedi. (2004). The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J. Biol. Chem. 279: 18550-18558. 14981085
d''Apolito, M., C. Ceccarini, R. Savino, I. Adipietro, I. di Bari, R. Santacroce, M. Curcetti, G. D''Andrea, A.I. Croce, C. Cesarano, A.N. Polito, and M. Margaglione. (2023). A Novel Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis. Genes (Basel) 14:. 37510285
D''Avanzo, N., A.J. Miles, A.M. Powl, C.G. Nichols, B.A. Wallace, and A.O. O''Reilly. (2022). The T1-tetramerisation domain of Kv1.2 rescues expression and preserves function of a truncated NaChBac sodium channel. FEBS Lett. [Epub: Ahead of Print] 35015304
D'Adamo, M.C., C. Gallenmüller, I. Servettini, E. Hartl, S.J. Tucker, L. Arning, S. Biskup, A. Grottesi, L. Guglielmi, P. Imbrici, P. Bernasconi, G. Di Giovanni, F. Franciolini, L. Catacuzzeno, M. Pessia, and T. Klopstock. (2014). Novel phenotype associated with a mutation in the KCNA1(Kv1.1) gene. Front Physiol 5: 525. 25642194
Dabby, R., M. Sadeh, R. Gilad, Y. Lampl, S. Cohen, S. Inbar, and E. Leshinsky-Silver. (2011). Chronic non-paroxysmal neuropathic pain - Novel phenotype of mutation in the sodium channel SCN9A gene. J Neurol Sci 301: 90-92. 21094958
Dai, G., T.K. Aman, F. DiMaio, and W.N. Zagotta. (2019). The HCN channel voltage sensor undergoes a large downward motion during hyperpolarization. Nat Struct Mol Biol 26: 686-694. 31285608
Dai, G., T.K. Aman, F. DiMaio, and W.N. Zagotta. (2021). Electromechanical coupling mechanism for activation and inactivation of an HCN channel. Nat Commun 12: 2802. 33990563
Darkow, E., D. Yusuf, S. Rajamani, R. Backofen, P. Kohl, U. Ravens, and R. Peyronnet. (2023). Meta-Analysis of Mechano-Sensitive Ion Channels in Human Hearts: Chamber- and Disease-Preferential mRNA Expression. Int J Mol Sci 24:. 37446137
Das, A. and H. Raghuraman. (2021). Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: A fluorescence approach. Biochim. Biophys. Acta. Biomembr 183568. [Epub: Ahead of Print] 33529577
Das, A., S. Chatterjee, and H. Raghuraman. (2019). Structural Dynamics of the Paddle Motif Loop in the Activated Conformation of KvAP Voltage Sensor. Biophys. J. [Epub: Ahead of Print] 31547975
Davies, A.G., J.T. Pierce-Shimomura, H. Kim, M.K. VanHoven, T.R. Thiele, A. Bonci, C.I. Bargmann, and S.L. McIntire. (2003). A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115: 655-666. 14675531
Davies, L.A., C. Hu, N.A. Guagliardo, N. Sen, X. Chen, E.M. Talley, R.M. Carey, D.A. Bayliss, and P.Q. Barrett (2008). TASK channel deletion in mice causes primary hyperaldosteronism. Proc. Natl. Acad. Sci. U.S.A. 105: 2203-2208. 18250325
Davis, M.J., J.A. Castorena-Gonzalez, and S.D. Zawieja. (2023). Electric field stimulation unmasks a subtle role for T-type calcium channels in regulating lymphatic contraction. Sci Rep 13: 15862. 37739992
de Kovel, C.G.F., S. Syrbe, E.H. Brilstra, N. Verbeek, B. Kerr, H. Dubbs, A. Bayat, S. Desai, S. Naidu, S. Srivastava, H. Cagaylan, U. Yis, C. Saunders, M. Rook, S. Plugge, H. Muhle, Z. Afawi, K.M. Klein, V. Jayaraman, R. Rajagopalan, E. Goldberg, E. Marsh, S. Kessler, C. Bergqvist, L.K. Conlin, B.L. Krok, I. Thiffault, M. Pendziwiat, I. Helbig, T. Polster, I. Borggraefe, J.R. Lemke, M.J. van den Boogaardt, R.S. Møller, and B.P.C. Koeleman. (2017). Neurodevelopmental Disorders Caused by De Novo Variants in KCNB1 Genotypes and Phenotypes. JAMA Neurol. [Epub: Ahead of Print] 28806457
de la Cruz, I.P., J.Z. Levin, C. Cummins, P. Anderson, and H.R. Horvitz. (2003). sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans. J. Neurosci. 23: 9133-9145. 14534247
de la Cruz, I.P., L. Ma, and H.R. Horvitz. (2014). The Caenorhabditis elegans iodotyrosine deiodinase ortholog SUP-18 functions through a conserved channel SC-box to regulate the muscle two-pore domain potassium channel SUP-9. PLoS Genet 10: e1004175. 24586202
de la Peña, P., P. Domínguez, and F. Barros. (2018). Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain. Pflugers Arch. [Epub: Ahead of Print] 29572566
De Marchi, U., N. Sassi, B. Fioretti, L. Catacuzzeno, G.M. Cereghetti, I. Szabò, and M. Zoratti. (2009). Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 45: 509-516. 19406468
de Prelle, B., P. Lybaert, and D. Gall. (2022). A Minimal Model Shows that a Positive Feedback Loop Between sNHE and SLO3 can Control Mouse Sperm Capacitation. Front Cell Dev Biol 10: 835594. 35399518
De Romanis, F. and N. Sopranzi. (2018). [Lamotrigine in the therapy of resistant epilepsy]. Clin Ter 150: 279-282. 10605165
Debnath, D.K., R.V. Basaiawmoit, K.L. Nielsen, and D.E. Otzen. (2011). The role of membrane properties in Mistic folding and dimerisation. Protein Eng Des Sel 24: 89-97. 21097953
Debreczeni, D., D. Baukál, E. Pergel, I. Veres, and G. Czirják. (2023). Critical contribution of the intracellular C-terminal region to TRESK channel activity is revealed by the epithelial Na current ratio (ENaR) method. J. Biol. Chem. 104737. [Epub: Ahead of Print] 37084812
Decher N., M. Maier, W. Dittrich, J. Gassenhuber, A. Bruggemann, A.E. Busch, K. Steinmeyer. (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett. 492:84-9. 11248242
Delemotte, L., M.A. Kasimova, M.L. Klein, M. Tarek, and V. Carnevale. (2015). Free-energy landscape of ion-channel voltage-sensor-domain activation. Proc. Natl. Acad. Sci. USA 112: 124-129. 25535341
Delemotte, L., W. Treptow, M.L. Klein, and M. Tarek. (2010). Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys. J. 99: L72-74. 21044565
Demidchik, V., S. Shabala, S. Isayenkov, T.A. Cuin, and I. Pottosin. (2018). Calcium transport across plant membranes: mechanisms and functions. New Phytol 220: 49-69. 29916203
Derebe, M.G., W. Zeng, Y. Li, A. Alam, and Y. Jiang. (2011). Structural studies of ion permeation and Ca2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Proc. Natl. Acad. Sci. USA 108: 592-597. 21187429
Desai, R., J. Kronengold, J. Mei, S.A. Forman, and L.K. Kaczmarek. (2008). Protein kinase C modulates inactivation of Kv3.3 channels. J. Biol. Chem. 283: 22283-22294. 18539595
DeSimone, C.V., V.V. Zarayskiy, V.E. Bondarenko, and M.J. Morales. (2011). Heteropoda toxin 2 interaction with Kv4.3 and Kv4.1 reveals differences in gating modification. Mol Pharmacol 80: 345-355. 21540294
Devor, M. (2006). Sodium channels and mechanisms of neuropathic pain. J Pain 7: S3-S12. 16426998
Di, L., S. Srivastava, O. Zhdanova, Y. Sun, Z. Li, and E.Y. Skolnik. (2010). Nucleoside diphosphate kinase B knock-out mice have impaired activation of the K+ channel KCa3.1, resulting in defective T cell activation. J. Biol. Chem. 285: 38765-38771. 20884616
Díaz-Franulic, I., V. González-Pérez, H. Moldenhauer, N. Navarro-Quezada, and D. Naranjo. (2018). Gating-induced large aqueous volumetric remodeling and aspartate tolerance in the voltage sensor domain of Shaker K channels. Proc. Natl. Acad. Sci. USA 115: 8203-8208. 30038023
Dib-Hajj, S.D., T.R. Cummins, J.A. Black, and S.G. Waxman. (2007). From genes to pain: Na v 1.7 and human pain disorders. Trends Neurosci. 30(11):555-63. 17950472
Dickinson, M.S., J. Lu, M. Gupta, I. Marten, R. Hedrich, and R.M. Stroud. (2022). Molecular basis of multistep voltage activation in plant two-pore channel 1. Proc. Natl. Acad. Sci. USA 119:. 35210362
Dickinson, M.S., S. Pourmal, M. Gupta, M. Bi, and R.M. Stroud. (2021). Symmetry Reduction in a Hyperpolarization-Activated Homotetrameric Ion Channel. Biochemistry. [Epub: Ahead of Print] 34964607
Ding, J., J.W. Zhang, Y.X. Guo, Y.X. Zhang, Z.H. Chen, and Q.X. Zhai. (2019). Novel mutations in SCN9A occurring with fever-associated seizures or epilepsy. Seizure 71: 214-218. 31394368
Dinsdale, R.L., C.E. Roache, and A.L. Meredith. (2023). Disease-associated KCNMA1 variants decrease circadian clock robustness in channelopathy mouse models. J Gen Physiol 155:. 37728576
Dixit, G., I.D. Sahu, W. Renyolds, T. Wadsworth, B.D. Harding, C.K. Jaycox, C. Dabney-Smith, C.R. Sanders, and G.A. Lorigan. (2019). Probing the Dynamics and Structural Topology of Reconstituted Human KCNQ1 Voltage Sensor Domain (Q1-VSD) in Lipid Bilayers using EPR Spectroscopy. Biochemistry. [Epub: Ahead of Print] 30620191
Dixon, R.E., E.P. Cheng, J.L. Mercado, and L.F. Santana. (2012). L-type ca(2+) channel function during timothy syndrome. Trends Cardiovasc Med 22: 72-76. 22999068
Dobler, T., A. Springauf, S. Tovornik, M. Weber, A. Schmitt, R. Sedlmeier, E. Wischmeyer, and F. Döring. (2007). TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J. Physiol. 585: 867-879. 17962323
Docampo R., Moreno SN. and Plattner H. (2014). Intracellular calcium channels in protozoa. Eur J Pharmacol. 739:4-18. 24291099
Dogra, D., P.L. Meza-Santoscoy, C. Gavrilovici, R. Rehak, C.L.R. de la Hoz, K. Ibhazehiebo, J.M. Rho, and D.M. Kurrasch. (2023). kcna1a mutant zebrafish model episodic ataxia type 1 (EA1) with epilepsy and show response to first-line therapy carbamazepine. Epilepsia 64: 2186-2199. 37209379
Doherty, T., Y. Su, and M. Hong. (2010). High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers. J. Mol. Biol. 401: 642-652. 20600109
Dong, Y.Y., A.C. Pike, A. Mackenzie, C. McClenaghan, P. Aryal, L. Dong, A. Quigley, M. Grieben, S. Goubin, S. Mukhopadhyay, G.F. Ruda, M.V. Clausen, L. Cao, P.E. Brennan, N.A. Burgess-Brown, M.S. Sansom, S.J. Tucker, and E.P. Carpenter. (2015). K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347: 1256-1259. 25766236
Döring, J.H., J. Schröter, J. Jüngling, S. Biskup, K.A. Klotz, T. Bast, T. Dietel, G.C. Korenke, S. Christoph, H. Brennenstuhl, G. Rubboli, R.S. Møller, G. Lesca, Y. Chaix, S. Kölker, G.F. Hoffmann, J.R. Lemke, and S. Syrbe. (2021). Refining Genotypes and Phenotypes in -Related Neurological Disorders. Int J Mol Sci 22:. 33802230
Douglas, R.M., J.C. Lai, S. Bian, L. Cummins, E. Moczydlowski, and G.G. Haddad. (2006). The calcium-sensitive large-conductance potassium channel (BK/MAXI K) is present in the inner mitochondrial membrane of rat brain. Neuroscience 139: 1249-61. 16567053
Downey, P., I. Szabó, N. Ivashikina, A. Negro, F. Guzzo, P. Ache, R. Hedrich, M. Terzi, and F. Lo Schiavo. (2000). KDC1, a novel carrot root hair K+channel: cloning, characterization, and expression in mammalian cells. J. Biol. Chem. 275: 394420-39426. 10970888
Doyle, D.A, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69-77. 9525859
Drenth, J.P., and S.G. Waxman. (2007). Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J. Clin. Invest. 117: 3603-3609. 18060017
Dreyer, I. and F. Vergara-Valladares. (2023). Temperature sensing: A potassium channel as cold sensor in the rain tree Samanea saman. Curr. Biol. 33: R1298-R1300. 38113843
Dreyer, I. and N. Uozumi. (2011). Potassium channels in plant cells. FEBS J. 278: 4293-4303. 21955642
Du Y., Nomura Y., Zhorov BS. and Dong K. (2015). Rotational Symmetry of Two Pyrethroid Receptor Sites in the Mosquito Sodium Channel. Mol Pharmacol. 88(2):273-80. 25972447
Du, X., Y. Chen, Y. Zhao, W. Luo, Z. Cen, and W. Hao. (2017). Dramatic response to pyridoxine in a girl with absence epilepsy with ataxia caused by a de novo CACNA1A mutation. Seizure 45: 189-191. 28088730
Du, Y., D. Garden, B. Khambay, B.S. Zhorov, and K. Dong. (2011). Batrachotoxin, pyrethroids, and BTG 502 share overlapping binding sites on insect sodium channels. Mol Pharmacol 80: 426-433. 21680776
Du, Y., W. Song, J.R. Groome, Y. Nomura, N. Luo, and K. Dong. (2010). A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides. Toxicol Appl Pharmacol 247: 53-59. 20561903
Duan, J.J., J.H. Ma, P.H. Zhang, X.P. Wang, A.R. Zou, and D.N. Tu. (2007). Verapamil blocks HERG channel by the helix residue Y652 and F656 in the S6 transmembrane domain. Acta Pharmacol Sin 28: 959-967. 17588331
Duarri, A., J. Jezierska, M. Fokkens, M. Meijer, H.J. Schelhaas, W.F. den Dunnen, F. van Dijk, C. Verschuuren-Bemelmans, G. Hageman, P. van de Vlies, B. Küsters, B.P. van de Warrenburg, B. Kremer, C. Wijmenga, R.J. Sinke, M.A. Swertz, H.H. Kampinga, E. Boddeke, and D.S. Verbeek. (2012). Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19. Ann Neurol 72: 870-880. 23280838
Duby, G., E. Hosy, C. Fizames, C. Alcon, A. Costa, H. Sentenac, and J.B. Thibaud. (2008). AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. Plant J. 53(1):115-123. 17976154
Dupuy, M., M. Gueguinou, M. Potier-Cartereau, F. Lézot, M. Papin, A. Chantôme, F. Rédini, C. Vandier, and F. Verrecchia. (2023). SK- and Kv1-type potassium channels and cancer: Promising therapeutic targets? Biochem Pharmacol 216: 115774. [Epub: Ahead of Print] 37678626
Durdagi, S., J. Subbotina, J. Lees-Miller, J. Guo, H.J. Duff, and S.Y. Noskov. (2010). Insights into the molecular mechanism of hERG1 channel activation and blockade by drugs. Curr. Med. Chem. 17: 3514-3532. 20738248
Durell, S.R., Y. Hao, T. Nakamura, E.P. Bakker, and H.R. Guy. (1999). Evolutionary relationship between K+ channels and symporters. Biophys. J. 77: 775-788. 10423425
Durkina, A.V., O.G. Bernikova, M.A. Gonotkov, N.J. Mikhaleva, K.A. Sedova, I.A. Malykhina, V.S. Kuzmin, I.O. Velegzhaninov, and J.E. Azarov. (2022). Melatonin treatment improves ventricular conduction via upregulation of Nav1.5 channel proteins and sodium current in the normal rat heart. J Pineal Res e12798. [Epub: Ahead of Print] 35384053
Dvorak, N.M., P.A. Wadsworth, P. Wang, J. Zhou, and F. Laezza. (2021). Development of Allosteric Modulators of Voltage-Gated Na+ Channels: A Novel Approach for an Old Target. Curr Top Med Chem. [Epub: Ahead of Print] 34036922
Dyer, J.R., W.L. Johnston, V.F. Castellucci, and R.J. Dunn. (1997). Cloning and tissue distribution of the Aplysia Na+ channel α-subunit cDNA. DNA Cell Biol 16: 347-356. 9115644
Edwards A., A.B. Heckmann, F. Yousafzai, G. Duc, J.A. Downie. (2007). Structural implications of mutations in the pea SYM8 symbiosis gene, the DMI1 ortholog, encoding a predicted ion channel. Mol Plant Microbe Interact. 20: 1183-1191. 17918620
Eigenbrod, O., K.Y. Debus, J. Reznick, N.C. Bennett, O. Sánchez-Carranza, D. Omerbašić, D.W. Hart, A.J. Barker, W. Zhong, H. Lutermann, J.V. Katandukila, G. Mgode, T.J. Park, and G.R. Lewin. (2019). Rapid molecular evolution of pain insensitivity in multiple African rodents. Science 364: 852-859. 31147513
El Mouhi, H., N. Amllal, M. Abbassi, A. Nedbour, M. Jalte, J. Lyahyai, S. Chafai Elalaoui, L. Bouguenouch, and S. Chaouki. (2024). Identification of novel and de novo variant in the SCN1A gene confirms Dravet syndrome in Moroccan child: a case report. Mol Biol Rep 51: 233. 38282049
Eldstrom, J., H. Xu, D. Werry, C. Kang, M.E. Loewen, A. Degenhardt, S. Sanatani, G.F. Tibbits, C. Sanders, and D. Fedida. (2010). Mechanistic basis for LQT1 caused by S3 mutations in the KCNQ1 subunit of IKs. J Gen Physiol 135: 433-448. 20421371
Elinder, F., M. Madeja, H. Zeberg, and P. Århem. (2016). Extracellular Linkers Completely Transplant the Voltage Dependence from Kv1.2 Ion Channels to Kv2.1. Biophys. J. 111: 1679-1691. 27760355
Ellekvist, P., J. Maciel, G. Mlambo, C.H. Ricke, H. Colding, D.A. Klaerke, and N. Kumar. (2008). Critical role of a K+ channel in Plasmodium berghei transmission revealed by targeted gene disruption. Proc. Natl. Acad. Sci. USA 105: 6398-6402. 18434537
Elter, A., A. Hartel, C. Sieben, B. Hertel, E. Fischer-Schliebs, U. Lüttge, A. Moroni, and G. Thiel. (2007). A plant homolog of animal chloride intracellular channels (CLICs) generates an ion conductance in heterologous systems. J. Biol. Chem. 282: 8786-8792. 17267397
Engel, A.J., S. Paech, M. Langhans, J.L. van Etten, A. Moroni, G. Thiel, and O. Rauh. (2023). Combination of hydrophobicity and codon usage bias determines sorting of model K channel protein to either mitochondria or endoplasmic reticulum. Traffic. [Epub: Ahead of Print] 37578147
Enyedi, P. and G. Czirják. (2010). Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev. 90: 559-605. 20393194
Enyedi, P., I. Veres, G. Braun, and G. Czirják. (2014). Tubulin Binds to the Cytoplasmic Loop of TRESK Background K+ Channel In Vitro. PLoS One 9: e97854. 24830385
Estacion, M., J.E. O'Brien, A. Conravey, M.F. Hammer, S.G. Waxman, S.D. Dib-Hajj, and M.H. Meisler. (2014). A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis 69: 117-123. 24874546
Evans, E.G.B., J.L.W. Morgan, F. DiMaio, W.N. Zagotta, and S. Stoll. (2020). Allosteric conformational change of a cyclic nucleotide-gated ion channel revealed by DEER spectroscopy. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 32358188
Faillace, M.P., R.O. Bernabeu, and J.I. Korenbrot. (2004). Cellular processing of cone photoreceptor cyclic GMP-gated ion channels: a role for the S4 structural motif. J. Biol. Chem. 279: 22643-22653. 15024024
Fan, C., N. Sukomon, E. Flood, J. Rheinberger, T.W. Allen, and C.M. Nimigean. (2020). Ball-and-chain inactivation in a calcium-gated potassium channel. Nature 580: 288-293. 32269335
Fan, J.J. and X. Huang. (2020). Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Rev Physiol Biochem Pharmacol. [Epub: Ahead of Print] 32894333
Fantin, S.M., H. Huang, C.R. Sanders, and B.T. Ruotolo. (2020). Collision-Induced Unfolding Differentiates Functional Variants of the KCNQ1 Voltage Sensor Domain. J Am Soc Mass Spectrom. [Epub: Ahead of Print] 32960579
Fawcett, G.L., C.M. Santi, A. Butler, T. Harris, M. Covarrubias, and L. Salkoff. (2006). Mutant analysis of the Shal (Kv4) voltage-gated fast transient K+ channel in Caenorhabditis elegans. J. Biol. Chem. 281: 30725-30735. 16899454
Fedida, D. and J.C. Hesketh. (2001). Gating of voltage-dependent potassium channels. Prog. Biophys. Mol. Biol. 75: 165-199. 11376798
Feinshreiber, L., D. Chikvashvili, I. Michaelevski, and I. Lotan. (2009). Syntaxin modulates Kv1.1 through dual action on channel surface expression and conductance. Biochemistry 48: 4109-4114. 19331362
Feng, Z.-P., J. Hamid, C. Doering, S.E. Jarvis, G.M. Bosey, E. Bourinet, T.P. Snutch, and G.W. Zamponi. (2001). Amino acid residues outside of the pore region contribute to N-type calcium channel permeation. J. Biol. Chem. 276: 5726-5730. 11120735
Fernández-Trillo, J., F. Barros, A. Machín, L. Carretero, P. Domínguez, and P. de la Peña. (2011). Molecular determinants of interactions between the N-terminal domain and the transmembrane core that modulate hERG K+ channel gating. PLoS One 6: e24674. 21935437
Fink M., F. Lesage, F. Duprat, C. Heurteaux, R. Reyes, M. Fosset, M. Lazdunski. (1998). A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J. 17:3297-308. 9628867
Fischer, T.Z. and S.G. Waxman. (2010). Familial pain syndromes from mutations of the NaV1.7 sodium channel. Ann. N.Y. Acad. Sci. 1184: 196-207. 20146699
Fischer, W.B. and M.S. Sansom. (2002). Viral ion channels: structure and function. Biochim. Biophys. Acta 1561: 27-45. 11988179
Ford, K.J. and G.W. Davis. (2014). Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction. J. Neurosci. 34: 14517-14525. 25355206
Freeman, S.A., S. Uderhardt, A. Saric, R.F. Collins, C.M. Buckley, S. Mylvaganam, P. Boroumand, J. Plumb, R.N. Germain, D. Ren, and S. Grinstein. (2020). Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science 367: 301-305. 31806695
Freites JA. and Tobias DJ. (2015). Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions. J Membr Biol. 248(3):419-30. 25972106
Freites, J.A., D.J. Tobias, and S.H. White. (2006). A voltage-sensor water pore. Biophys. J. 91: L90-92. 17012321
Fujinami, S., T. Sato, J.S. Trimmer, B.W. Spiller, D.E. Clapham, T.A. Krulwich, I. Kawagishi, and M. Ito. (2007). The voltage-gated Na+ channel NavBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology. 153: 4027-4038. 18048917
Fujiu, K., Y. Nakayama, A. Yanagisawa, M. Sokabe, and K. Yoshimura. (2009). Chlamydomonas CAV2 encodes a voltage- dependent calcium channel required for the flagellar waveform conversion. Curr. Biol. 19: 133-139. 19167228
Fukasaku, M., J. Kimura, and O. Yamaguchi. (2016). Swelling-activated and arachidonic acid-induced currents are TREK-1 in rat bladder smooth muscle cells. Fukushima J Med Sci. [Epub: Ahead of Print] 26911303
Furini, S. and C. Domene. (2012). On conduction in a bacterial sodium channel. PLoS Comput Biol 8: e1002476. 22496637
Fux, J.E., A. Mehta, J. Moffat, and J.D. Spafford. (2018). Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations. Front Physiol 9: 1406. 30519187
Galindo, B.E., A.T. Neill, and V.D. Vacquier. (2005). A new hyperpolarization-activated, cyclic nucleotide-gated channel from sea urchin sperm flagella. Biochem. Biophys. Res. Commun. 334: 96-101. 15992765
Galindo, B.E., J.L. de la Vega-Beltrán, P. Labarca, V.D. Vacquier, and A. Darszon. (2007). Sp-tetraKCNG: A novel cyclic nucleotide gated K+ channel. Biochem. Biophys. Res. Commun. 354: 668-675. 17254550
Gamal El-Din, T.M. and M.J. Lenaeus. (2022). Fenestropathy of Voltage-Gated Sodium Channels. Front Pharmacol 13: 842645. 35222049
Gandini, M.A., I.A. Souza, L. Ferron, A.M. Innes, and G.W. Zamponi. (2021). The de novo CACNA1A pathogenic variant Y1384C associated with hemiplegic migraine, early onset cerebellar atrophy and developmental delay leads to a loss of Cav2.1 channel function. Mol Brain 14: 27. 33557884
Gao, Q., C. Yang, L. Meng, Z. Wang, D. Chen, Y. Peng, K. Yang, and Z. Bian. (2020). Activated KCNQ1 channel promotes fibrogenic response in hereditary gingival fibromatosis via clustering and activation of Ras. J Periodontal Res. [Epub: Ahead of Print] 33381870
Gao, Q.F., L.L. Gu, H.Q. Wang, C.F. Fei, X. Fang, J. Hussain, S.J. Sun, J.Y. Dong, H. Liu, and Y.F. Wang. (2016). Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc. Natl. Acad. Sci. USA 113: 3096-3101. 26929345
García Segarra, N., I. Gautschi, L. Mittaz-Crettol, C. Kallay Zetchi, L. Al-Qusairi, M.X. Van Bemmelen, P. Maeder, L. Bonafé, L. Schild, and E. Roulet-Perez. (2014). Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A. J Neurol Sci 342: 69-78. 24836863
Garciadeblas, B., J. Barrero-Gil, B. Benito, and A. Rodríguez-Navarro. (2007). Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake. Plant J. 52: 1080-1093. 17916113
Gardella, E., F. Becker, R.S. Møller, J. Schubert, J.R. Lemke, L.H. Larsen, H. Eiberg, M. Nothnagel, H. Thiele, J. Altmüller, S. Syrbe, A. Merkenschlager, T. Bast, B. Steinhoff, P. Nürnberg, Y. Mang, L. Bakke Møller, P. Gellert, S. Heron, L. Dibbens, S. Weckhuysen, H.A. Dahl, S. Biskup, N. Tommerup, H. Hjalgrim, H. Lerche, S. Beniczky, and Y.G. Weber. (2015). Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol. [Epub: Ahead of Print] 26677014
Gardner, A., W. Wu, S. Thomson, E.M. Zangerl-Plessl, A. Stary-Weinzinger, and M. Sanguinetti. (2017). Molecular basis of altered hERG1 channel gating induced by ginsenoside Rg3. Mol Pharmacol. [Epub: Ahead of Print] 28705808
Garg, P., A. Gardner, V. Garg, and M.C. Sanguinetti. (2013). Structural basis of ion permeation gating in Slo2.1 K+ channels. J Gen Physiol 142: 523-542. 24166878
Garneau, L., H. Klein, M.F. Lavoie, E. Brochiero, L. Parent, and R. Sauvé. (2014). Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process. J Gen Physiol 143: 289-307. 24470490
Garrett, S. and J.J. Rosenthal. (2012). RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science 335: 848-851. 22223739
Garten, M., S. Aimon, P. Bassereau, and G.E. Toombes. (2015). Reconstitution of a Transmembrane Protein, the Voltage-gated Ion Channel, KvAP, into Giant Unilamellar Vesicles for Microscopy and Patch Clamp Studies. J Vis Exp. 25650630
Gaymard, F., G. Pilot, B. Lacombe, D. Bouchez, D. Bruneau, J. Boucherez, N. Michaux-Ferriere, J.B. Thibaud, and H. Sentenac. (1998). Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647-655. 9741629
Gazzarrini, S., J.L. Van Etten, D. DiFrancesco, G. Thiel, and A. Moroni. (2002). Voltage-dependence of virus-encoded miniature K+ channel Kcv. J. Membrane Biol. 187: 15-25. 12029374
Gazzarrini, S., M. Kang, A. Abenavoli, G. Romani, C. Olivari, D. Gaslini, G. Ferrara, J.L. van Etten, M. Kreim, S.M. Kast, G. Thiel, and A. Moroni. (2009). Chlorella virus ATCV-1 encodes a functional potassium channel of 82 amino acids. Biochem. J. 420: 295-303. 19267691
Geiger D., Becker D., Vosloh D., Gambale F., Palme K., Rehers M., Anschuetz U., Dreyer I., Kudla J. and Hedrich R. (2009). Heteromeric AtKC1{middle dot}AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J Biol Chem. 284(32):21288-95. 19509299
Geng, Y. and K.L. Magleby. (2014). Single-channel kinetics of BK (Slo1) channels. Front Physiol 5: 532. 25653620
Genta, P.R. and L. Taranto-Montemurro. (2023). Task Accomplished: Promising Effects of a New Topical Potassium Channel Antagonist in OSA. Chest 163: 749-750. 37031981
Gessner, G., Y.M. Cui, Y. Otani, T. Ohwada, M. Soom, T. Hoshi, and S.H. Heinemann. (2012). Molecular mechanism of pharmacological activation of BK channels. Proc. Natl. Acad. Sci. USA 109: 3552-3557. 22331907
Gilch, S., O. Meyer, and I. Schmidt. (2010). Electron paramagnetic studies of the copper and iron containing soluble ammonia monooxygenase from Nitrosomonas europaea. Biometals 23: 613-622. 20204476
Gill, C.H., A. Randall, S.A. Bates, K. Hill, D. Owen, P.M. Larkman, W. Cairns, S.P. Yusaf, P.R. Murdock, P.J. Strijbos, A.J. Powell, C.D. Benham, and C.H. Davies. (2004). Characterization of the human HCN1 channel and its inhibition by capsazepine. Br J Pharmacol 143: 411-421. 15351778
Giordanetto, F., L. Knerr, and A. Wållberg. (2011). T-type calcium channels inhibitors: a patent review. Expert Opin Ther Pat 21: 85-101. 21087200
Giorgetti, A., A.V. Nair, P. Codega, V. Torre, and P. Carloni. (2005). Structural basis of gating of CNG channels. FEBS Lett. 579: 1968-1972. 15792804
Glaaser, I.W., J.R. Bankston, H. Liu, M. Tateyama, and R.S. Kass. (2006). A carboxyl-terminal hydrophobic interface is critical to sodium channel function. Relevance to inherited disorders. J. Biol. Chem. 281: 24015-24023. 16798729
Glauner, K.S., L.M. Mannuzzu, C.S. Gandhi, and E.Y. Isacoff. (1999). Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402: 813-817. 10617202
Gobert, A., G. Park, A. Amtmann, D. Sanders, and F.J. Maathuis. (2006). Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57: 791-800. 16449377
Gofman Y., Shats S., Attali B., Haliloglu T. and Ben-Tal N. (2012). How does KCNE1 regulate the Kv7.1 potassium channel? Model-structure, mutations, and dynamics of the Kv7.1-KCNE1 complex. Structure. 20(8):1343-52. 22771213
Gofman, Y., C. Schärfe, D.S. Marks, T. Haliloglu, and N. Ben-Tal. (2014). Structure, dynamics and implied gating mechanism of a human cyclic nucleotide-gated channel. PLoS Comput Biol 10: e1003976. 25474149
Gohar, O. (2006). Ion Channel Modulation by G-protein Coupled Receptors. Modulators. 21:2-9.
Goineau, S., L. Gallet, and G. Froget. (2024). Whole-Cell Configuration of the Patch-Clamp Technique in the hERG Channel Assay. Curr Protoc 4: e959. 38334240
Gomez-Lagunas, F. (2010). Quinidine interaction with Shab K+ channels: pore block and irreversible collapse of the K+ conductance. J. Physiol. 588: 2691-2706. 20547671
Gomez-Ospina, N., F. Tsuruta, O. Barreto-Chang, L. Hu, and R. Dolmetsch. (2006). The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127: 591-606. 17081980
Gong, Q., M.A. Jones, and Z. Zhou. (2006). Mechanisms of pharmacological rescue of trafficking-defective hERG mutant channels in human long QT syndrome. J. Biol. Chem. 281: 4069-4074. 16361248
Gonsalez, S.R., D.S. Gomes, A.M. de Souza, F.M. Ferrão, Z. Vallotton, V.R. Gogulamudi, J. Lowe, D.E. Casarini, M.C. Prieto, and L.S. Lara. (2023). The Triad Na Activated Na Channel (Nax)-Salt Inducible KINASE (SIK) and (Na + K)-ATPase: Targeting the Villains to Treat Salt Resistant and Sensitive Hypertension. Int J Mol Sci 24:. 37175599
Gonzalez W., Riedelsberger J., Morales-Navarro SE., Caballero J., Alzate-Morales JH., Gonzalez-Nilo FD. and Dreyer I. (2012). The pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids. Biochem J. 442(1):57-63. 22070190
Gonzalez W., Valdebenito B., Caballero J., Riadi G., Riedelsberger J., Martinez G., Ramirez D., Zuniga L., Sepulveda FV., Dreyer I., Janta M. and Becker D. (2015). K(2)p channels in plants and animals. Pflugers Arch. 467(5):1091-104. 25369776
Gonzalez, C., G.F. Contreras, A. Peyser, P. Larsson, A. Neely, and R. Latorre. (2012). Voltage sensor of ion channels and enzymes. Biophys Rev 4: 1-15. 28509999
González-Sanabria, N., F. Echeverría, I. Segura, R. Alvarado-Sánchez, and R. Latorre. (2021). BK in Double-Membrane Organelles: A Biophysical, Pharmacological, and Functional Survey. Front Physiol 12: 761474. 34764886
Goodchild, S.J., C. Lamy, V. Seutin, and N.V. Marrion. (2009). Inhibition of K(Ca)2.2 and K(Ca)2.3 channel currents by protonation of outer pore histidine residues. J Gen Physiol 134: 295-308. 19786583
Goral RO., Leipold E., Nematian-Ardestani E. and Heinemann SH. (2015). Heterologous expression of NaV1.9 chimeras in various cell systems. Pflugers Arch. 467(12):2423-35. 25916202
Gouas, L., C. Bellocq, M. Berthet, F. Potet, S. Demolombe, A. Forhan, R. Lescasse, F. Simon, B. Balkau, I. Denjoy, B. Hainque, I. Baró, P. Guicheney, and. (2004). New KCNQ1 mutations leading to haploinsufficiency in a general population; Defective trafficking of a KvLQT1 mutant. Cardiovasc Res 63: 60-68. 15194462
Goutierre, M., S. Al Awabdh, F. Donneger, E. François, D. Gomez-Dominguez, T. Irinopoulou, L. Menendez de la Prida, and J.C. Poncer. (2019). KCC2 Regulates Excitability and Hippocampal Activity via Interaction with Task-3 Channels. Cell Rep 28: 91-103.e7. 31269453
Grabe, M., H.C. Lai, M. Jain, Y. Nung Jan, and L. Yeh Jan. (2007). Structure prediction for the down state of a potassium channel voltage sensor. Nature 445: 550-553. 17187053
Grabner, M., R.T. Dirksen, N. Suda, and K.G. Beam. (1999). The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J. Biol. Chem. 274: 21913-21919. 10419512
Grahammer, F., R. Warth, J. Barhanin, M. Bleich, and M.J. Hug. (2001). The small conductance K+ channel, KCNQ1. Expression, function, and subunit composition in murine trachea. J. Biol. Chem. 276: 42268-42275. 11527966
Gravante, B., A. Barbuti, R. Milanesi, I. Zappi, C. Viscomi, and D. DiFrancesco. (2004). Interaction of the pacemaker channel HCN1 with filamin A. J. Biol. Chem. 279: 43847-43853. 15292205
Gray, R. and D. Johnston. (2021). Sodium sensitivity of K channels in mouse CA1 neurons. J Neurophysiol. [Epub: Ahead of Print] 33788620
Grefen, C., Z. Chen, A. Honsbein, N. Donald, A. Hills, and M.R. Blatt. (2010). A novel motif essential for SNARE interaction with the K+ channel KC1 and channel gating in Arabidopsis. Plant Cell 22: 3076-3092. 20884800
Greiner, T., A. Moroni, J.L. Van Etten, and G. Thiel. (2018). Genes for Membrane Transport Proteins: Not So Rare in Viruses. Viruses 10:. 30149667
Gribkoff, V.K. and R.J. Winquist. (2023). Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 208: 115413. 36646291
Griguoli, M., A. Maul, C. Nguyen, A. Giorgetti, P. Carloni, and E. Cherubini. (2010). Nicotine blocks the hyperpolarization-activated current Ih and severely impairs the oscillatory behavior of oriens-lacunosum moleculare interneurons. J. Neurosci. 30: 10773-10783. 20702707
Groome JR., Lehmann-Horn F., Fan C., Wolf M., Winston V., Merlini L. and Jurkat-Rott K. (2014). NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery. Brain. 137(Pt 4):998-1008. 24549961
Grupe, A., K.H. Schröter, J.P. Ruppersberg, M. Stocker, T. Drewes, S. Beckh, and O. Pongs. (1990). Cloning and expression of a human voltage-gated potassium channel. A novel member of the RCK potassium channel family. EMBO. J. 9: 1749-1756. 2347305
Gu, R.X. and B.L. de Groot. (2020). Lipid-protein interactions modulate the conformational equilibrium of a potassium channel. Nat Commun 11: 2162. 32358584
Gu, Z., L.D. Plant, X.Y. Meng, J.M. Perez-Aguilar, Z. Wang, M. Dong, D.E. Logothetis, and R. Zhou. (2017). Exploring the Nanotoxicology of MoS2: A Study on the Interaction of MoS2 Nanoflakes and K+ Channels. ACS Nano. [Epub: Ahead of Print] 29236481
Gubitosi-Klug, R.A., D.J. Mancuso, and R.W. Gross. (2005). The human Kv1.1 channel is palmitoylated, modulating voltage sensing: Identification of a palmitoylation consensus sequence. Proc. Natl. Acad. Sci. USA 102: 5964-5968. 15837928
Guidelli, R. (2023). An Insight into the Potassium Currents of hERG and Their Simulation. Molecules 28:. 37110748
Gulbins, E., N. Sassi, H. Grassmè, M. Zoratti, and I. Szabò. (2010). Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim. Biophys. Acta. 1797: 1251-1259. 20114030
Gulbis, J.M., M. Zhou, S. Mann, and R. MacKinnon. (2000). Structure ofthe cytoplasmic β subunit-T1 assembly of voltage-dependent K+ channels. Science 289: 123-127. 10884227
Gulbis, J.M., S. Mann, and R. MacKinnon. (1999). Structure of a voltage-dependent K+ channel beta subunit. Cell 97: 943-952. 10399921
Gunaratne, G.S., S. Kumar, Y. Lin-Moshier, J.T. Slama, E. Brailiou, S. Patel, T.F. Walseth, and J.S. Marchant. (2023). Progesterone receptor membrane component 1 facilitates Ca signal amplification between endosomes and the endoplasmic reticulum. J. Biol. Chem. 105378. [Epub: Ahead of Print] 37866635
Guo, J., W. Zeng, and Y. Jiang. (2017). Tuning the ion selectivity of two-pore channels. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 28096396
Guo, J., W. Zeng, Q. Chen, C. Lee, L. Chen, Y. Yang, C. Cang, D. Ren, and Y. Jiang. (2015). Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature. [Epub: Ahead of Print] 26689363
Guo, X., S. Wang, X. Lin, Z. Wang, Y. Dou, Y. Cao, Y. Zhang, X. Luo, L. Kang, T. Yu, Z. Wang, Y. Tan, S. Gao, H. Zheng, F. Zhao, H. Wang, K. Wang, F. Xie, W. Chen, and X. Luo. (2023). A novel risk variant block across introns 36-45 of CACNA1C for schizophrenia: a cohort-wise replication and cerebral region-wide validation study. Psychiatr Genet 33: 182-190. 37706495
Gupta, R.K., D.K. Swain, V. Singh, M. Anand, S. Choudhury, S. Yadav, A. Saxena, and S.K. Garg. (2018). Molecular characterization of voltage-gated potassium channel (Kv) and its importance in functional dynamics in bull spermatozoa. Theriogenology 114: 229-236. [Epub: Ahead of Print] 29656213
Gurevitz, M. (2012). Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon 60: 502-511. 22694883
Haitin, Y. and B. Attali. (2008). The C-terminus of Kv7 channels: a multifunctional module. J. Physiol. 586: 1803-1810. 18218681
Hall, M.K., D.A. Weidner, S. Dayal, E. Pak, A.K. Murashov, and R.A. Schwalbe. (2017). Membrane Distribution and Activity of a Voltage-Gated K+ Channel is Modified by Replacement of Complex Type N-Glycans with Hybrid Type. J Glycobiol 6:. 30271698
Hamamoto, S., J. Marui, K. Matsuoka, K. Higashi, K. Igarashi, T. Nakagawa, T. Kuroda, Y. Mori, Y. Murata, Y. Nakanishi, M. Maeshima, I. Yabe, and N. Uozumi. (2008). Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J. Biol. Chem. 283: 1911-1920. 18029350
Hamid, J., J.B. Peloquin, A. Monteil, and G.W. Zamponi. (2006). Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: a role of domain IV? Neuroscience 143: 717-728. 16996222
Hamilton, K.L., Syme, C.A., and Devor, D.C. (2003). Molecular localization of the inhibitory arachidonic acid binding site to the pore of hIK1. J. Biol. Chem. 278: 16690-16697. 12609997
Han, C., Y. Yang, R.H. Te Morsche, J.P. Drenth, J.M. Politei, S.G. Waxman, and S.D. Dib-Hajj. (2016). Familial gain-of-function Nav1.9 mutation in a painful channelopathy. J Neurol Neurosurg Psychiatry. [Epub: Ahead of Print] 27503742
Han, W., S. Nattel, T. Noguchi, and A. Shrier. (2006). C-terminal domain of Kv4.2 and associated KChIP2 interactions regulate functional expression and gating of Kv4.2. J. Biol. Chem. 281: 27134-27144. 16820361
Han, X., L.G. Pinto, B. Vilar, and P.A. McNaughton. (2024). Opioid-Induced Hyperalgesia and Tolerance Are Driven by HCN Ion Channels. J. Neurosci. 44:. 38124021
Handlin, L.J. and G. Dai. (2023). Direct regulation of the voltage sensor of HCN channels by membrane lipid compartmentalization. Nat Commun 14: 6595. 37852983
Hanlon, M.R. and B.A. Wallace. (2002). Structure and function of voltage-dependent ion channel regulatory β subunits. Biochemistry 41: 2886-2894. 11863426
Hantouche, C., B. Williamson, W.C. Valinsky, J. Solomon, A. Shrier, and J.C. Young. (2016). Bag1 Promotes TRC8-Dependent Degradation of Misfolded hERG Potassium Channels. J. Biol. Chem. [Epub: Ahead of Print] 27998983
Harkcom, W.T., M. Papanikolaou, V. Kanda, S.M. Crump, and G.W. Abbott. (2019). KCNQ1 rescues TMC1 plasma membrane expression but not mechanosensitive channel activity. J Cell Physiol. [Epub: Ahead of Print] 30613966
Hashimoto, K., M. Saito, H. Matsuoka, K. Iida, and H. Iida. (2004). Functional analysis of a rice putative voltage-dependent Ca2+ channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1. Plant Cell Physiol. 45: 496-500. 15111725
Hayoz, S., P.B. Tiwari, G. Piszczek, A. Üren, and T.I. Brelidze. (2017). Investigating cyclic nucleotide and cyclic dinucleotide binding to HCN channels by surface plasmon resonance. PLoS One 12: e0185359. 28950029
He, C., S. Altshuler-Keylin, D. Daniel, N.D. L''Etoile, and D. O''Halloran. (2016). The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input. Neurosci Lett 632: 71-78. [Epub: Ahead of Print] 27561605
He, W., G.T. Young, B. Zhang, P.J. Cox, L.T. Cho, S. John, S.A. Paciga, L.S. Wood, N. Danziger, S. Scollen, and C. Vangjeli. (2018). Functional confirmation that the R1488* variant in SCN9A results in complete loss-of-function of Na1.7. BMC Med Genet 19: 124. 30037327
Heath, G.R. and S. Scheuring. (2019). Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters. Curr. Opin. Struct. Biol. 57: 93-102. 30878714
Heigl, T., M.A. Netzer, L. Zanetti, M. Ganglberger, M.L. Fernández-Quintero, and A. Koschak. (2023). Characterization of two pathological gating-charge substitutions in Cav1.4 L-type calcium channels. Channels (Austin) 17: 2192360. 36943941
Heiland, M., N.M.C. Connolly, O. Mamad, N.T. Nguyen, J.C. Kesavan, E. Langa, K. Fanning, A. Sanfeliu, Y. Yan, J. Su, M.T. Venø, L.S. Costard, V. Neubert, T. Engel, T.D.M. Hill, T.M. Freiman, A. Mahesh, V.K. Tiwari, F. Rosenow, S. Bauer, J. Kjems, G. Morris, and D.C. Henshall. (2023). MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control. Proc. Natl. Acad. Sci. USA 120: e2216658120. 37463203
Held, K., F. Gruss, V.D. Aloi, A. Janssens, C. Ulens, T. Voets, and J. Vriens. (2018). Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. J. Physiol. [Epub: Ahead of Print] 29604058
Hellmer, J. and C. Zeilinger. (2003). MjK1, a K+ channel from M. jannaschii, mediates K+ uptake and K+ sensitivity in E. coli. FEBS Lett. 547: 165-169. 12860407
Hemara-Wahanui A., S. Berjukow, C.I. Hope, P.K. Dearden, S.B. Wu, J. Wilson-Wheeler, D.M. Sharp, P. Lundon-Treweek, G.M. Clover, J.C. Hoda, J. Striessnig, R. Marksteiner, S. Hering, M.A. Maw. (2005). A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc. Natl. Acad. Sci. U.S.A. 102: 7553-7558. 15897456
Henrion, U., S. Zumhagen, K. Steinke, N. Strutz-Seebohm, B. Stallmeyer, F. Lang, E. Schulze-Bahr, and G. Seebohm. (2012). Overlapping Cardiac Phenotype Associated with a Familial Mutation in the Voltage Sensor of the KCNQ1 Channel. Cell Physiol Biochem 29: 809-818. 22613981
Hertel, B., S. Tayefeh, T. Kloss, J. Hewing, M. Gebhardt, D. Baumeister, A. Moroni, G. Thiel, and S.M. Kast. (2010). Salt bridges in the miniature viral channel Kcv are important for function. Eur Biophys. J. 39: 1057-1068. 19390850
Higerd-Rusli, G.P., S. Tyagi, C.A. Baker, S. Liu, F.B. Dib-Hajj, S.D. Dib-Hajj, and S.G. Waxman. (2023). Inflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activity. Proc. Natl. Acad. Sci. USA 120: e2215417120. 36897973
Hille, B. (1992). Chapter 9: Structure of channel proteins; Chapter 20: Evolution and diversity. In: Ionic Channels of Excitable Membranes, 2nd Ed., Sinaur Assoc. Inc., Pubs., Sunderland, Massachusetts.
Hiraide, T., T. Akita, K. Uematsu, S. Miyamoto, M. Nakashima, M. Sasaki, A. Fukuda, M. Kato, and H. Saitsu. (2022). A novel de novo KCNB1 variant altering channel characteristics in a patient with periventricular heterotopia, abnormal corpus callosum, and mild seizure outcome. J Hum Genet. [Epub: Ahead of Print] 36257979
Hirano, M., Y. Onishi, T. Yanagida, and T. Ide. (2011). Role of the KcsA channel cytoplasmic domain in pH-dependent gating. Biophys. J. 101: 2157-2162. 22067153
Hirazawa, K., M. Tateyama, Y. Kubo, and T. Shimomura. (2021). Phosphoinositide regulates dynamic movement of the S4 voltage sensor in the second repeat in two-pore channel 3. J. Biol. Chem. 297: 101425. 34800436
Hite, R.K., P. Yuan, Z. Li, Y. Hsuing, T. Walz, and R. MacKinnon. (2015). Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+ channel. Nature 527: 198-203. 26436452
Hofer, N.T., P. Tuluc, N.J. Ortner, Y.V. Nikonishyna, M.L. Fernándes-Quintero, K.R. Liedl, B.E. Flucher, H. Cox, and J. Striessnig. (2020). Biophysical classification of a de novo mutation as a high-risk mutation for a severe neurodevelopmental disorder. Mol Autism 11: 4. 31921405
Hoffgaard F., Kast SM., Moroni A., Thiel G. and Hamacher K. (2015). Tectonics of a K(+) channel: The importance of the N-terminus for channel gating. Biochim Biophys Acta. 1848(12):3197-204. 26403836
Holland, K.D., J.A. Kearney, T.A. Glauser, G. Buck, M. Keddache, J.R. Blankston, I.W. Glaaser, R.S. Kass, and M.H. Meisler. (2008). Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett 433(1): 65-70. 18242854
Honsbein A., Sokolovski S., Grefen C., Campanoni P., Pratelli R., Paneque M., Chen Z., Johansson I. and Blatt MR. (2009). A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell. 21(9):2859-77. 19794113
Hoomann, T., N. Jahnke, A. Horner, S. Keller, and P. Pohl. (2013). Filter gate closure inhibits ion but not water transport through potassium channels. Proc. Natl. Acad. Sci. USA 110: 10842-10847. 23754382
Hooper, R., D. Churamani, E. Brailoiu, C.W. Taylor, and S. Patel. (2011). Membrane topology of NAADP-sensitive two-pore channels and their regulation by N-linked glycosylation. J. Biol. Chem. 286: 9141-9149. 21173144
Horn, R. (2000). Conversation between voltage sensors and gates of ion channels. Biochemistry 39: 15653-15658. 11123889
Horng, T.L., R.S. Eisenberg, C. Liu, and F. Bezanilla. (2018). Continuum Gating Current Models Computed with Consistent Interactions. Biophys. J. [Epub: Ahead of Print] 30612713
Hou, S., R. Xu, S.H. Heinemann, and T. Hoshi. (2008). The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels. Proc. Natl. Acad. Sci. USA 105: 4039-4043. 18316727
Houdinet, G., C. Guerrero-Galán, B.D. Rose, K. Garcia, and S.D. Zimmermann. (2022). Secrets of the fungus-specific potassium channel TOK family. Trends Microbiol. [Epub: Ahead of Print] 36567187
Howarth, G.S. and A.E. McDermott. (2022). High-Resolution Magic Angle Spinning NMR of KcsA in Liposomes: The Highly Mobile C-Terminus. Biomolecules 12:. 36009016
Hu, W., R.B. Clark, W.R. Giles, E. Shibata, and H. Zhang. (2021). Physiological Roles of the Rapidly Activated Delayed Rectifier K Current in Adult Mouse Heart Primary Pacemaker Activity. Int J Mol Sci 22:. 33946248
Hu, X., Y. Wang, M. Jing, Y. Hua, and J. Wang. (2022). Dramatic response to lamotrigine in two patients with refractory epilepsy due to calcium channel mutations. Epileptic Disord 24: 1-3. 36193018
Hu, Z., X. Zheng, and J. Yang. (2023). Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Commun 14: 4284. 37463923
Huang, D.T., N. Chi, S.C. Chen, T.Y. Lee, and K. Hsu. (2011). Background K(2P) channels KCNK3/9/15 limit the budding of cell membrane-derived vesicles. Cell Biochem Biophys 61: 585-594. 21761257
Huang, J., M. Estacion, P. Zhao, F.B. Dib-Hajj, B. Schulman, A. Abicht, I. Kurth, K. Brockmann, S.G. Waxman, and S.D. Dib-Hajj. (2019). A Novel Gain-of-Function Nav1.9 Mutation in a Child With Episodic Pain. Front Neurosci 13: 918. 31551682
Huang, M.H., P.Y. Liu, and S.N. Wu. (2019). Characterization of Perturbing Actions by Verteporfin, a Benzoporphyrin Photosensitizer, on Membrane Ionic Currents. Front Chem 7: 566. 31508407
Huang, Q., W. Zhu, X. Gao, X. Liu, Z. Zhang, and B. Xing. (2023). Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Adv Drug Deliv Rev 195: 114763. 36841331
Huang, X., H. Miyata, H. Wang, G. Mori, R. Iida-Norita, M. Ikawa, R. Percudani, and J.J. Chung. (2023). A CUG-initiated CATSPERθ functions in the CatSper channel assembly and serves as a checkpoint for flagellar trafficking. Proc. Natl. Acad. Sci. USA 120: e2304409120. 37725640
Hug, L.A., B.J. Baker, K. Anantharaman, C.T. Brown, A.J. Probst, C.J. Castelle, C.N. Butterfield, A.W. Hernsdorf, Y. Amano, K. Ise, Y. Suzuki, N. Dudek, D.A. Relman, K.M. Finstad, R. Amundson, B.C. Thomas, and J.F. Banfield. (2016). A new view of the tree of life. Nat Microbiol 1: 16048. 27572647
Hull, J.M. and L.L. Isom. (2017). Voltage-gated sodium channel β subunits: The power outside the pore in brain development and disease. Neuropharmacology. [Epub: Ahead of Print] 28927993
Humphries, J., L. Xiong, J. Liu, A. Prindle, F. Yuan, H.A. Arjes, L. Tsimring, and G.M. Süel. (2017). Species-Independent Attraction to Biofilms through Electrical Signaling. Cell 168: 200-209.e12. 28086091
Idikuda, V., W. Gao, Z. Su, Q. Liu, and L. Zhou. (2018). cAMP binds to closed, inactivated, and open sea urchin HCN channels in a state-dependent manner. J Gen Physiol. [Epub: Ahead of Print] 30541772
Ikematsu, N., M.L. Dallas, F.A. Ross, R.W. Lewis, J.N. Rafferty, J.A. David, R. Suman, C. Peers, D.G. Hardie, and A.M. Evans. (2011). Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proc. Natl. Acad. Sci. USA 108: 18132-18137. 22006306
Ikrar, T., H. Hanawa, H. Watanabe, S. Okada, Y. Aizawa, M.M. Ramadan, S. Komura, F. Yamashita, M. Chinushi, and Y. Aizawa. (2008). A double-point mutation in the selectivity filter site of the KCNQ1 potassium channel results in a severe phenotype, LQT1, of long QT syndrome. J Cardiovasc Electrophysiol 19: 541-549. 18266681
Imbrici, P., A. Accogli, R. Blunck, C. Altamura, M. Iacomino, M.C. D''adamo, A. Allegri, M. Pedemonte, N. Brolatti, S. Vari, M. Cataldi, V. Capra, S. Gustincich, F. Zara, J.F. Desaphy, and C. Fiorillo. (2021). Musculoskeletal Features without Ataxia Associated with a Novel de novo Mutation in Impairing the Voltage Sensitivity of Kv1.1 Channel. Biomedicines 9:. 33466780
Infield, D.T., E.E.L. Lee, J.D. Galpin, G.D. Galles, F. Bezanilla, and C.A. Ahern. (2018). Replacing voltage sensor arginines with citrulline provides mechanistic insight into charge versus shape. J Gen Physiol 150: 1017-1024. 29866793
Infield, D.T., K. Matulef, J.D. Galpin, K. Lam, E. Tajkhorshid, C.A. Ahern, and F.I. Valiyaveetil. (2018). Main-chain mutagenesis reveals intrahelical coupling in an ion channel voltage-sensor. Nat Commun 9: 5055. 30498243
Iorio, J., C. Duranti, T. Lottini, E. Lastraioli, G. Bagni, A. Becchetti, and A. Arcangeli. (2020). K11.1 Potassium Channel and the Na/H Antiporter NHE1 Modulate Adhesion-Dependent Intracellular pH in Colorectal Cancer Cells. Front Pharmacol 11: 848. 32587517
Isbell, H.M., A.M. Kilpatrick, Z. Lin, R. Mahling, and M.A. Shea. (2018). Backbone resonance assignments of complexes of apo human calmodulin bound to IQ motif peptides of voltage-dependent sodium channels Na1.1, Na1.4 and Na1.7. Biomol NMR Assign. [Epub: Ahead of Print] 29728980
Ito, M., H. Xu, A.A. Guffanti, Y. Wei, L. Zvi, D.E. Clapham, and T.A. Krulwich. (2004). The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of the alkaliphilic Bacillus. Proc. Natl. Acad. Sci. USA 101: 10566-10571. 15243157
Iwahashi, Y., Y. Toyama, S. Imai, H. Itoh, M. Osawa, M. Inoue, and I. Shimada. (2020). Conformational equilibrium shift underlies altered K channel gating as revealed by NMR. Nat Commun 11: 5168. 33057011
Iwamoto, M., H. Shimizu, F. Inoue, T. Konno, Y.C. Sasaki, and S. Oiki. (2006). Surface structure and its dynamic rearrangements of the KcsA potassium channel upon gating and tetrabutylammonium blocking. J. Biol. Chem. 281: 28379-28386. 16835240
Jacinto, J.G.P., I.M. Häfliger, E.E. Akyürek, R. Sacchetto, C. Benazzi, A. Gentile, and C. Drögemüller. (2021). -Related Syndromic Form of Congenital Neuromuscular Channelopathy in a Crossbred Calf. Genes (Basel) 12:. 34828398
Jalily Hasani, H., A. Ganesan, M. Ahmed, and K.H. Barakat. (2018). Effects of protein-protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel. PLoS One 13: e0191905. 29444113
Jalkanen, R., N.T. Bech-Hansen, R. Tobias, E.M. Sankila, M. Mäntyjärvi, H. Forsius, A. de la Chapelle, and T. Alitalo. (2007). A novel CACNA1F gene mutation causes Aland Island eye disease. Invest Ophthalmol Vis Sci 48: 2498-2502. 17525176
James, Z.M., A.J. Borst, Y. Haitin, B. Frenz, F. DiMaio, W.N. Zagotta, and D. Veesler. (2017). CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 114: 4430-4435. 28396445
Jan, L.Y. and Y.N. Jan. (1997). Cloned potassium channels from eukaryotes and prokaryotes. Annu. Rev. Neurosci. 20: 91-123. 9056709
Jaślan, D., T.D. Mueller, D. Becker, J. Schultz, T. Cuin, I. Marten, I. Dreyer, G. Schönknecht, and R. Hedrich. (2016). Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain. Plant Biol (Stuttg). [Epub: Ahead of Print] 27270880
Jędrychowska, J. and V. Korzh. (2019). Kv2.1 voltage-gated potassium channel et al. in developmental perspective. Dev Dyn. [Epub: Ahead of Print] 31512327
Jegla, T. and L. Salkoff. (1995). A multigene family of novel K+ channels from Paramecium tetraurelia. Receptors Channels 3: 51-60. 8589993
Jensen H.S., K. Callo, T. Jespersen, B.S. Jensen, S.P. Olesen. (2005). The KCNQ5 potassium channel from mouse: a broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes. Brain Res. Mol. Brain Res. 139: 52-62. 15963599
Jensen, M.&.#.2.1.6.;., V. Jogini, D.W. Borhani, A.E. Leffler, R.O. Dror, and D.E. Shaw. (2012). Mechanism of voltage gating in potassium channels. Science 336: 229-233. 22499946
Jeong, H.K., S.N. Hong, N. Yoon, K.H. Lee, H.W. Park, and J.G. Cho. (2023). Antiarrhythmic Effect of Artemisinin in an Ex-vivo Model of Brugada Syndrome Induced by NS5806. Korean Circ J 53: 239-250. 37161682
Jia, Z., M. Yazdani, G. Zhang, J. Cui, and J. Chen. (2018). Hydrophobic gating in BK channels. Nat Commun 9: 3408. 30143620
Jiang D., Du Y., Nomura Y., Wang X., Wu Y., Zhorov BS. and Dong K. (2015). Mutations in the transmembrane helix S6 of domain IV confer cockroach sodium channel resistance to sodium channel blocker insecticides and local anesthetics. Insect Biochem Mol Biol. 66:88-95. 26407935
Jiang, D., T.M. Gamal El-Din, C. Ing, P. Lu, R. Pomès, N. Zheng, and W.A. Catterall. (2018). Structural basis for gating pore current in periodic paralysis. Nature. [Epub: Ahead of Print] 29769724
Jiang, Q.X. (2021). High-Resolution Structures of K Channels. Handb Exp Pharmacol. [Epub: Ahead of Print] 33829342
Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. (2002). Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417: 515-522. 12037559
Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. (2003a). X-ray structure of a voltage-dependent K+ channel. Nature 423: 33-41. 12721618
Jiang, Y., V. Idikuda, S. Chowdhury, and B. Chanda. (2020). Activation of the archaeal ion channel MthK is exquisitely regulated by temperature. Elife 9:. 33274718
Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. (2003b). The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423: 42-48. 12721619
Johansson, I., K. Wulfetange, F. Porée, E. Michard, P. Gajdanowicz, B. Lacombe, H. Sentenac, J.B. Thibaud, B. Mueller-Roeber, M.R. Blatt, and I. Dreyer. (2006). External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant J. 46: 269-281. 16623889
Jones, J., D.J. Correll, S.M. Lechner, I. Jazic, X. Miao, D. Shaw, C. Simard, J.D. Osteen, B. Hare, A. Beaton, T. Bertoch, A. Buvanendran, A.S. Habib, L.J. Pizzi, R.A. Pollak, S.G. Weiner, C. Bozic, P. Negulescu, P.F. White, and. (2023). Selective Inhibition of Na1.8 with VX-548 for Acute Pain. N Engl J Med 389: 393-405. 37530822
Jones, J.M., L. Dionne, J. Dell''Orco, R. Parent, J.N. Krueger, X. Cheng, S.D. Dib-Hajj, R.K. Bunton-Stasyshyn, L.M. Sharkey, J.J. Dowling, G.G. Murphy, V.G. Shakkottai, P. Shrager, and M.H. Meisler. (2016). Single amino acid deletion in transmembrane segment D4S6 of sodium channel Scn8a (Nav1.6) in a mouse mutant with a chronic movement disorder. Neurobiol Dis 89: 36-45. 26807988
Jospin, M., S. Watanabe, D. Joshi, S. Young, K. Hamming, C. Thacker, T.P. Snutch, E.M. Jorgensen, and K. Schuske. (2007). UNC-80 and the NCA ion channels contribute to endocytosis defects in synaptojanin mutants. Curr. Biol. 17: 1595-1600. 17825559
Jæger, K.H., A.G. Edwards, W.R. Giles, and A. Tveito. (2021). A computational method for identifying an optimal combination of existing drugs to repair the action potentials of SQT1 ventricular myocytes. PLoS Comput Biol 17: e1009233. 34383746
Kallure, G.S., K. Pal, Y. Zhou, C.J. Lingle, and S. Chowdhury. (2023). High-resolution structures illuminate key principles underlying voltage and LRRC26 regulation of Slo1 channels. bioRxiv. 38187713
Kanellopoulos, A.H. and A. Matsuyama. (2016). Voltage-gated sodium channels and pain-related disorders. Clin Sci (Lond) 130: 2257-2265. 27815510
Kanellopoulos, A.H., J. Koenig, H. Huang, M. Pyrski, Q. Millet, S. Lolignier, T. Morohashi, S.J. Gossage, M. Jay, J.E. Linley, G. Baskozos, B.M. Kessler, J.J. Cox, A.C. Dolphin, F. Zufall, J.N. Wood, and J. Zhao. (2018). Mapping protein interactions of sodium channel Na1.7 using epitope-tagged gene-targeted mice. EMBO. J. 37: 427-445. 29335280
Kang, C., C.G. Vanoye, R.C. Welch, W.D. Van Horn, and C.R. Sanders. (2010). Functional delivery of a membrane protein into oocyte membranes using bicelles. Biochemistry 49: 653-655. 20044833
Kang, D., E. Mariash, and D. Kim. (2004). Functional expression of TRESK-2, a new member of the tandem-pore K+ channel family. J. Biol. Chem. 279: 28063-28070. 15123670
Kang, S.K., N.A. Hawkins, D.M. Echevarria-Cooper, E.M. Baker, C.J. Dixon, N. Speakes, and J.A. Kearney. (2023). Altered neurological and neurobehavioral phenotypes in a mouse model of the recurrent -p.R306C voltage-sensor variant. bioRxiv. 37034689
Kanzaki, M., M. Nagasawa, I. Kojima, C. Sato, K. Naruse, M. Sokabe, and H. Iida. (1999). Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285: 882-886. 10436155
Kapplinger JD., Giudicessi JR., Ye D., Tester DJ., Callis TE., Valdivia CR., Makielski JC., Wilde AA. and Ackerman MJ. (2015). Enhanced Classification of Brugada Syndrome-Associated and Long-QT Syndrome-Associated Genetic Variants in the SCN5A-Encoded Nav1.5 Cardiac Sodium Channel. Circ Cardiovasc Genet. 8(4):582-95. 25904541
Kapplinger, J.D., D.J. Tester, M. Alders, B. Benito, M. Berthet, J. Brugada, P. Brugada, V. Fressart, A. Guerchicoff, C. Harris-Kerr, S. Kamakura, F. Kyndt, T.T. Koopmann, Y. Miyamoto, R. Pfeiffer, G.D. Pollevick, V. Probst, S. Zumhagen, M. Vatta, J.A. Towbin, W. Shimizu, E. Schulze-Bahr, C. Antzelevitch, B.A. Salisbury, P. Guicheney, A.A. Wilde, R. Brugada, J.J. Schott, and M.J. Ackerman. (2010). An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 7: 33-46. 20129283
Karelina, T.V., Y.D. Stepanenko, P.A. Abushik, D.A. Sibarov, and S.M. Antonov. (2017). Downregulation of Purkinje Cell Activity by Modulators of Small Conductance Calcium-Activated Potassium Channels In Rat Cerebellum. Acta Naturae 8: 91-99. 28050270
Kariev, A.M. and M.E. Green. (2018). The Role of Proton Transport in Gating Current in a Voltage Gated Ion Channel, as Shown by Quantum Calculations. Sensors (Basel) 18:. 30231473
Kaupp, U.B. and R. Seifert. (2001). Molecular diversity of pacemaker ion channels. Annu. Rev. Physiol. 63: 235-257. 11181956
Kember, R.L., R. Vickers-Smith, H. Xu, S. Toikumo, M. Niarchou, H. Zhou, E.E. Hartwell, R.C. Crist, C.T. Rentsch, , L.K. Davis, A.C. Justice, S. Sanchez-Roige, K.M. Kampman, J. Gelernter, and H.R. Kranzler. (2022). Cross-ancestry meta-analysis of opioid use disorder uncovers novel loci with predominant effects in brain regions associated with addiction. Nat Neurosci 25: 1279-1287. 36171425
Kihira, Y., T.O. Hermanstyne, and H. Misonou. (2010). Formation of heteromeric Kv2 channels in mammalian brain neurons. J. Biol. Chem. 285: 15048-15055. 20202934
Kim, H., J.T. Pierce-Shimomura, H.J. Oh, B.E. Johnson, M.B. Goodman, and S.L. McIntire. (2009). The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans. PLoS Genet 5: e1000780. 20019812
Kim, H.J., B.G. Kim, J.E. Park, C.S. Ki, J. Huh, J.B. Youm, J.S. Kang, and H. Cho. (2019). Characterization of a novel LQT3 variant with a selective efficacy of mexiletine treatment. Sci Rep 9: 12997. 31506521
Kim, H.J., D. Yang, S.H. Kim, B. Kim, H.D. Kim, J.S. Lee, J.R. Choi, S.T. Lee, and H.C. Kang. (2019). Genetic and clinical features of SCN8A developmental and epileptic encephalopathy. Epilepsy Res 158: 106222. [Epub: Ahead of Print] 31675620
Kim, H.J., P. Lv, C.R. Sihn, and E.N. Yamoah. (2011). Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2. J. Biol. Chem. 286: 1517-1527. 20966080
Kim, T., S. Kim, H.M. Yun, K.C. Chung, Y.S. Han, H.S. Shin, and H. Rhim. (2009). Modulation of Ca(v)3.1 T-type Ca2+ channels by the ran binding protein RanBPM. Biochem. Biophys. Res. Commun. 378: 15-20. 18801335
Kintzer, A.F. and R.M. Stroud. (2016). Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531: 258-262. 26961658
Kintzer, A.F., E.M. Green, P.K. Dominik, M. Bridges, J.P. Armache, D. Deneka, S.S. Kim, W. Hubbell, A.A. Kossiakoff, Y. Cheng, and R.M. Stroud. (2018). Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 30190435
Kirichok, Y., B. Navarro, and D.E. Clapham. (2006). Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439: 737-740. 16467839
Kirsch, S.A., A. Kugemann, A. Carpaneto, R.A. Böckmann, and P. Dietrich. (2018). Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2. Cell Mol Life Sci. [Epub: Ahead of Print] 29705952
Kise, Y., G. Kasuya, H.H. Okamoto, D. Yamanouchi, K. Kobayashi, T. Kusakizako, T. Nishizawa, K. Nakajo, and O. Nureki. (2021). Structural basis of gating modulation of Kv4 channel complexes. Nature. [Epub: Ahead of Print] 34552243
Kleopa, K.A. (2011). Autoimmune channelopathies of the nervous system. Curr Neuropharmacol 9: 458-467. 22379460
Kluge, C., M. Pöhnl, and R.A. Böckmann. (2022). Spontaneous local membrane curvature induced by transmembrane proteins. Biophys. J. 121: 671-683. 35122737
Ko, C.M., C.K. Then, Y.M. Kuo, Y.K. Lin, and S.C. Shen. (2023). Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx. Int J Mol Sci 24:. 37958813
Koishi, R., H. Xu, D. Ren, B. Navarro, B.W. Spiller, Q. Shi, and D.E. Clapham. (2004). A superfamily of voltage-gated sodium channels in bacteria. J. Biol. Chem. 279: 9532-9538. 14665618
Komiya, M., M. Kato, D. Tadaki, T. Ma, H. Yamamoto, R. Tero, Y. Tozawa, M. Niwano, and A. Hirano-Iwata. (2020). Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels. Chem Rec. [Epub: Ahead of Print] 31944562
Kon, S., A. Takaku, F. Toyama, E. Takayama-Watanabe, and A. Watanabe. (2019). Acrosome reaction-inducing substance triggers two different pathways of sperm intracellular signaling in newt fertilization. Int J Dev Biol 63: 589-595. 32149368
Kongmeneck, A.D., M.A. Kasimova, and M. Tarek. (2023). Modulation of the I channel by PIP requires two binding sites per monomer. BBA Adv 3: 100073. 37082259
Köpfer, D.A., C. Song, T. Gruene, G.M. Sheldrick, U. Zachariae, and B.L. de Groot. (2014). Ion permeation in K⁺ channels occurs by direct Coulomb knock-on. Science 346: 352-355. 25324389
Kostritskii, A.Y. and J.P. Machtens. (2023). Domain- and state-specific shape of the electric field tunes voltage sensing in voltage-gated sodium channels. Biophys. J. [Epub: Ahead of Print] 37077046
Koulgi, S., V. Jani, V. Nair, J.S. Saini, S. Phukan, U. Sonavane, R. Joshi, R. Kamboj, and V. Palle. (2021). Molecular dynamics of hERG channel: insights into understanding the binding of small molecules for detuning cardiotoxicity. J Biomol Struct Dyn 1-17. [Epub: Ahead of Print] 33494645
Kourrich, S., T. Hayashi, J.Y. Chuang, S.Y. Tsai, T.P. Su, and A. Bonci. (2013). Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 152: 236-247. 23332758
Kowal, J., M. Chami, P. Baumgartner, M. Arheit, P.L. Chiu, M. Rangl, S. Scheuring, G.F. Schröder, C.M. Nimigean, and H. Stahlberg. (2014). Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat Commun 5: 3106. 24469021
Koyama, S., O. Wada-Hiraike, S. Nakagawa, M. Tanikawa, H. Hiraike, Y. Miyamoto, K. Sone, K. Oda, H. Fukuhara, K. Nakagawa, S. Kato, T. Yano, and Y. Taketani. (2010). Repression of estrogen receptor beta function by putative tumor suppressor DBC1. Biochem. Biophys. Res. Commun. 392: 357-362. 20074560
Krasinkiewicz, J.M., D. Hubbard, N. Perez de Guzman, A. Masters, Y. Zhao, H. Gaston, and B. Gaston. (2023). Erythrocytic metabolism of ATLX-0199: An agent that increases minute ventilation. Biochem. Biophys. Res. Commun. 680: 171-176. 37741264
Kratochvil, H.T., J.K. Carr, K. Matulef, A.W. Annen, H. Li, M. Maj, J. Ostmeyer, A.L. Serrano, H. Raghuraman, S.D. Moran, J.L. Skinner, E. Perozo, B. Roux, F.I. Valiyaveetil, and M.T. Zanni. (2016). Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 353: 1040-1044. 27701114
Krishnamoorthy-Natarajan, G. and M. Koide. (2016). BK Channels in the Vascular System. Int Rev Neurobiol 128: 401-438. 27238270
Kuang Q., Purhonen P., Jegerschold C. and Hebert H. (2014). The projection structure of Kch, a putative potassium channel in Escherichia coli, by electron crystallography. Biochim Biophys Acta. 1838(1 Pt B):237-43. 24055821
Kuang, Q., P. Purhonen, C. Jegerschöld, P.J.B. Koeck, and H. Hebert. (2015). Free RCK arrangement in Kch, a putative escherichia coli potassium channel, as suggested by electron crystallography. Structure 23: 199-205. 25497729
Kubota, T., A.M. Correa, and F. Bezanilla. (2017). Mechanism of functional interaction between potassium channel Kv1.3 and sodium channel NavBeta1 subunit. Sci Rep 7: 45310. 28349975
Kubota, T., F. Wu, S. Vicart, M. Nakaza, D. Sternberg, D. Watanabe, M. Furuta, Y. Kokunai, T. Abe, N. Kokubun, B. Fontaine, S.C. Cannon, and M.P. Takahashi. (2020). Hypokalaemic periodic paralysis with a charge-retaining substitution in the voltage sensor. Brain Commun 2: fcaa103. 33005891
Kuenze, G., C.G. Vanoye, R.R. Desai, S. Adusumilli, K.R. Brewer, H. Woods, E.F. McDonald, C.R. Sanders, A.L. George, Jr, and J. Meiler. (2020). Allosteric mechanism for KCNE1 modulation of KCNQ1 potassium channel activation. Elife 9:. 33095155
Kugler, A., B. Köhler, K. Palme, P. Wolff, and P. Dietrich. (2009). Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol 9: 140. 19943938
Kukovetz, K., B. Hertel, C.R. Schvarcz, A. Saponaro, M. Manthey, U. Burk, T. Greiner, G.F. Steward, J.L. Van Etten, A. Moroni, G. Thiel, and O. Rauh. (2020). A Functional K Channel from Tetraselmis Virus 1, a Member of the. Viruses 12:. 33003637
Kullmann DM. and Waxman SG. (2010). Neurological channelopathies: new insights into disease mechanisms and ion channel function. J Physiol. 588(Pt 11):1823-7. 20375141
Kumar, A., M.Z. Kos, D. Roybal, and M.A. Carless. (2023). A pilot investigation of differential hydroxymethylation levels in patient-derived neural stem cells implicates altered cortical development in bipolar disorder. Front Psychiatry 14: 1077415. 37139321
Kumar, P., D. Kumar, S.K. Jha, N.K. Jha, and R.K. Ambasta. (2016). Ion Channels in Neurological Disorders. Adv Protein Chem Struct Biol 103: 97-136. 26920688
Kunkel, M.T., D.B. Johnstone, J.H. Thomas, and L. Salkoff. (2000). Mutants of a temperature-sensitive two-P domain potassium channel. J. Neurosci. 20: 7517-7524. 11027209
Kuo, C.S., S. Dobi, C. Gök, A. Da Silva Costa, A. Main, O. Robertson-Gray, D. Baptista-Hon, K.J. Wypijewski, H. Costello, T.G. Hales, N. MacQuaide, G.L. Smith, and W. Fuller. (2023). Palmitoylation of the pore-forming subunit of Ca(v)1.2 controls channel voltage sensitivity and calcium transients in cardiac myocytes. Proc. Natl. Acad. Sci. USA 120: e2207887120. 36745790
Kuo, M.M., Y. Saimi, C. Kung, and S. Choe. (2007). Patch clamp and phenotypic analyses of a prokaryotic cyclic nucleotide-gated K+ channel using Escherichia coli as a host. J. Biol. Chem. 282: 24294-24301. 17588940
Kuo, M.M.-C., Y. Saimi, and C. Kung. (2003). Gain-of-function mutations indicate that Escherichia coli Kch forms a functional K+ conduit in vivo. EMBO J. 22: 4049-4058. 12912904
Kurusu, T., T. Yagala, A. Miyao, H. Hirochika, and K. Kuchitsu. (2005). Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J. 42: 798-809. 15941394
Kurusu, T., Y. Sakurai, A. Miyao, H. Hirochika, and K. Kuchitsu. (2004). Identification of a putative voltage-gated Ca2+ -permeable channel (OsTPC1) involved in Ca2+ influx and regulation of growth and development in rice. Plant Cell Physiol. 45: 693-702. 15215504
Kuum, M., V. Veksler, J. Liiv, R. Ventura-Clapier, and A. Kaasik. (2012). Endoplasmic reticulum potassium-hydrogen exchanger and small conductance calcium-activated potassium channel activities are essential for ER calcium uptake in neurons and cardiomyocytes. J Cell Sci 125: 625-633. 22331352
Labro, A.J., I.R. Boulet, F.S. Choveau, E. Mayeur, T. Bruyns, G. Loussouarn, A.L. Raes, and D.J. Snyders. (2011). The S4-S5 linker of KCNQ1 channels forms a structural scaffold with the S6 segment controlling gate closure. J. Biol. Chem. 286: 717-725. 21059661
Ladwig, F., R.I. Dahlke, N. Stührwohldt, J. Hartmann, K. Harter, and M. Sauter. (2015). Phytosulfokine Regulates Growth in Arabidopsis through a Response Module at the Plasma Membrane That Includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1. Plant Cell 27: 1718-1729. 26071421
Lamothe, S.M., A.E. Hogan-Cann, W. Li, J. Guo, T. Yang, J.N. Tschirhart, and S. Zhang. (2018). The N terminus and transmembrane segment S1 of Kv1.5 can coassemble with the rest of the channel independent of the S1-S2 linkage. J. Biol. Chem. [Epub: Ahead of Print] 30121572
Lampert, A., S.D. Dib-Hajj, L. Tyrrell, and S.G. Waxman. (2006). Size matters: Erythromelalgia mutation S241T in Nav1.7 alters channel gating. J. Biol. Chem. 281: 36029-36035. 17008310
Landra-Willm, A., A. Karapurkar, A. Duveau, A.A. Chassot, L. Esnault, G. Callejo, M. Bied, S. Häfner, F. Lesage, B. Wdziekonski, A. Baron, P. Fossat, L. Marsollier, X. Gasull, E. Boué-Grabot, M.A. Kienzler, and G. Sandoz. (2023). A photoswitchable inhibitor of TREK channels controls pain in wild-type intact freely moving animals. Nat Commun 14: 1160. 36859433
Langan, P.S., V.G. Vandavasi, W. Kopec, B. Sullivan, P.V. Afonne, K.L. Weiss, B.L. de Groot, and L. Coates. (2020). The structure of a potassium-selective ion channel reveals a hydrophobic gate regulating ion permeation. IUCrJ 7: 835-843. 32939275
Larsson, J.E., D.J.A. Frampton, and S.I. Liin. (2020). Polyunsaturated Fatty Acids as Modulators of K7 Channels. Front Physiol 11: 641. 32595524
Latorre, R., K. Castillo, W. Carrasquel-Ursulaez, R.V. Sepulveda, F. Gonzalez-Nilo, C. Gonzalez, and O. Alvarez. (2017). Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol. Rev. 97: 39-87. 27807200
Latz, A., D. Becker, M. Hekman, T. Müller, D. Beyhl, I. Marten, C. Eing, A. Fischer, M. Dunkel, A. Bertl, U.R. Rapp, and R. Hedrich. (2007). TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J. 52: 449-459. 17764516
Lazniewska, J. and N. Weiss. (2017). Glycosylation of voltage-gated calcium channels in health and disease. Biochim. Biophys. Acta. 1859: 662-668. [Epub: Ahead of Print] 28109749
Lazzari-Dean, J.R., A.M.M. Gest, and E.W. Miller. (2019). Optical estimation of absolute membrane potential using fluorescence lifetime imaging. Elife 8:. [Epub: Ahead of Print] 31545164
Lebaudy, A., F. Pascaud, A.A. Véry, C. Alcon, I. Dreyer, J.B. Thibaud, and B. Lacombe. (2010). Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells. J. Biol. Chem. 285: 6265-6274. 20040603
Lee H., Lin MC., Kornblum HI., Papazian DM. and Nelson SF. (2014). Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum Mol Genet. 23(13):3481-9. 24501278
Lee, C.H. and R. MacKinnon. (2017). Structures of the Human HCN1 Hyperpolarization-Activated Channel. Cell 168: 111-120.e11. 28086084
Lee, C.H. and R. MacKinnon. (2018). Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 360: 508-513. 29724949
Lee, J.H., B.H. Lee, S.H. Choi, I.S. Yoon, T.J. Shin, M.K. Pyo, S.M. Lee, H.C. Kim, and S.Y. Nah. (2008). Involvement of batrachotoxin binding sites in ginsenoside-mediated voltage-gated Na+ channel regulation. Brain Res 1203: 61-67. 18321475
Lee, U.S., J. Shi, and J. Cui. (2010). Modulation of BK channel gating by the ß2 subunit involves both membrane-spanning and cytoplasmic domains of Slo1. J. Neurosci. 30: 16170-16179. 21123563
Leipold, E., F. Ullrich, M. Thiele, A.A. Tietze, H. Terlau, D. Imhof, and S.H. Heinemann. (2017). Subtype-specific block of voltage-gated K channels by μ-conopeptides. Biochem. Biophys. Res. Commun. 482: 1135-1140. 27916464
Leng Q., R.W. Mercier, B.G. Hua, H. Fromm, G.A. Berkowitz. (2002). Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol. 128: 400-410. 11842144
Lengyel, M., G. Czirják, and P. Enyedi. (2018). TRESK background potassium channel is not gated at the helix bundle crossing near the cytoplasmic end of the pore. PLoS One 13: e0197622. 29763475
Lewis, A., Z.A. McCrossan, R.W. Manville, M.O. Popa, L.G. Cuello, and S.A.N. Goldstein. (2020). TOK channels use the two gates in classical K channels to achieve outward rectification. FASEB J. [Epub: Ahead of Print] 32519783
Li, F., X. Gong, L. Yuan, X. Pan, H. Jin, R. Lu, and S. Wu. (2022). Indoxacarb resistance-associated mutation of Liriomyza trifolii in Hainan, China. Pestic Biochem Physiol 183: 105054. 35430077
Li, H., X. Ding, H. Guan, and C. Xiong. (2009). Inhibition of human sperm function and mouse fertilization in vitro by an antibody against cation channel of sperm 1: the contraceptive potential of its transmembrane domains and pore region. Fertil Steril 92: 1141-1146. 18976756
Li, J., Y. Li, Y. Liu, H. Yu, N. Xu, D. Huang, Y. Xue, S. Li, H. Chen, J. Liu, Q. Li, Y. Zhao, R. Zhang, H. Xue, Y. Sun, M. Li, P. Li, M. Liu, Z. Zhang, X. Li, W. Du, N. Wang, and B. Yang. (2021). Fibroblast Growth Factor 21 Ameliorates Na1.5 and Kir2.1 Channel Dysregulation in Human AC16 Cardiomyocytes. Front Pharmacol 12: 715466. 34630093
Li, L., K. Liu, Y. Hu, D. Li, and S. Luan. (2008). Single mutations convert an outward K+ channel into an inward K+ channel. Proc. Natl. Acad. Sci. USA 105: 2871-2876. 18287042
Li, M., X. Zhou, S. Wang, I. Michailidis, Y. Gong, D. Su, H. Li, X. Li, and J. Yang. (2017). Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature. [Epub: Ahead of Print] 28099415
Li, P., H. Liu, C. Lai, P. Sun, W. Zeng, F. Wu, L. Zhang, S. Wang, C. Tian, and J. Ding. (2014). Differential Modulations of KCNQ1 by Auxiliary Proteins KCNE1 and KCNE2. Sci Rep 4: 4973. 24827085
Li, Q., S. Wanderling, P. Sompornpisut, and E. Perozo. (2014). Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain. Nat Struct Mol Biol 21: 160-166. 24413055
Li, Q., X. Guan, K. Yen, J. Zhang, and J. Yan. (2016). The single transmembrane segment determines the modulatory function of the BK channel auxiliary γ subunit. J Gen Physiol 147: 337-351. 27022192
Li, S., B. Wu, and W. Han. (2019). Parametrization of MARTINI for Modeling Hinging Motions in Membrane Proteins. J Phys Chem B 123: 2254-2269. 30762370
Li, S.H., G.L. Ma, S.L. Zhang, Y.Y. Yang, H.F. Liu, A. Luo, J. Wen, Z.Z. Cao, and Y.Z. Jia. (2023). Naringin exerts antiarrhythmic effects by inhibiting channel currents in mouse cardiomyocytes. J Electrocardiol 80: 69-80. [Epub: Ahead of Print] 37262953
Li, W. and R.W. Aldrich. (2011). Electrostatic influences of charged inner pore residues on the conductance and gating of small conductance Ca2+ activated K+ channels. Proc. Natl. Acad. Sci. USA 108: 5946-5953. 21422289
Liao, P., Y. Qiu, Y. Mo, J. Fu, Z. Song, L. Huang, S. Bai, Y. Wang, J.J. Zhu, F. Tian, Z. Chen, N. Pan, E.Y. Sun, L. Yang, X. Lan, Y. Chen, D. Huang, P. Sun, L. Zhao, D. Yang, W. Lu, T. Yang, J. Xiao, W.G. Li, Z. Gao, B. Shen, Q. Zhang, J. Liu, H. Jiang, R. Jiang, and H. Yang. (2019). Selective activation of TWIK-related acid-sensitive K 3 subunit-containing channels is analgesic in rodent models. Sci Transl Med 11:. 31748231
Liin, S.I., P.E. Lund, J.E. Larsson, J. Brask, B. Wallner, and F. Elinder. (2018). Biaryl sulfonamide motifs up- or down-regulate ion channel activity by activating voltage sensors. J Gen Physiol. [Epub: Ahead of Print] 30002162
Lim, H.H., B.J. Park, H.S. Choi, C.S. Park, S.H. Eom, and J. Ahnn. (1999). Identification and characterization of a putative C. elegans potassium channel gene (Ce-slo-2) distantly related to Ca2+-activated K+ channels. Gene 240: 35-43. 10564810
Lin, M.H., J.F. Lin, M.C. Yu, S.N. Wu, C.L. Wu, and H.Y. Cho. (2022). Characterization in Potent Modulation on Voltage-Gated Na Current Exerted by Deltamethrin, a Pyrethroid Insecticide. Int J Mol Sci 23:. 36499059
Lin, S., M. Ke, Y. Zhang, Z. Yan, and J. Wu. (2021). Structure of a mammalian sperm cation channel complex. Nature 595: 746-750. 34225353
Lin, Y., T. Zhao, S. He, J. Huang, Q. Liu, Z. Yang, J. Qin, N. Yu, H. Lu, and X. Lin. (2020). Compound and heterozygous mutations of KCNQ1 in long QT syndrome with familial history of unexplained sudden death: Identified by analysis of whole exome sequencing and predisposing genes. Ann Noninvasive Electrocardiol 25: e12694. 31565860
Ling, K.Y., B. Vaillant, W.J. Haynes, Y. Saimi, and C. Kung. (1998). A comparison of internal eliminated sequences in the genes that encode two K+-channel isoforms in Paramecium tetraurelia. J Eukaryot Microbiol 45: 459-465. 9703683
Lishko, P.V., I.L. Botchkina, and Y. Kirichok. (2011). Progesterone activates the principal Ca2+ channel of human sperm. Nature 471: 387-391. 21412339
Liu J., J. Xia, K.H. Cho, D.E. Clapham, D. Ren. (2007). CatSperβ, a novel transmembrane protein in the CatSper channel complex. J. Biol. Chem. 282: 18945-18952. 17478420
Liu, H., H.G. Wang, G.S. Pitt, and Z.J. Liu. (2022). Direct Observation of Compartment-Specific Localization and Dynamics of Voltage-Gated Sodium Channels. J. Neurosci. [Epub: Ahead of Print] 35672149
Liu, J., A. Prindle, J. Humphries, M. Gabalda-Sagarra, M. Asally, D.Y. Lee, S. Ly, J. Garcia-Ojalvo, and G.M. Süel. (2015). Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523: 550-554. 26200335
Liu, J., H. Tan, W. Yang, S. Yao, and L. Hong. (2019). The voltage-gated sodium channel Na1.7 associated with endometrial cancer. J Cancer 10: 4954-4960. 31598168
Liu, K., L. Li, and S. Luan. (2006). Intracellular K+ sensing of SKOR, a Shaker-type K+ channel from Arabidopsis. Plant J. 46: 260-268. 16623888
Liu, M. and A. Gelli. (2008). Elongation factor 3, EF3, associates with the calcium channel Cch1 and targets Cch1 to the plasma membrane in Cryptococcus neoformans. Eukaryot. Cell. 7: 1118-1126. 18503003
Liu, P., B. Chen, and Z.W. Wang. (2014). SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nat Commun 5: 5155. 25300429
Liu, P., Q. Ge, B. Chen, L. Salkoff, M.I. Kotlikoff, and Z.W. Wang. (2011). Genetic dissection of ion currents underlying all-or-none action potentials in C. elegans body-wall muscle cells. J. Physiol. 589: 101-117. 21059759
Liu, X., Y. Wu, and Y. Zhou. (2010). Intracellular linkers are involved in Mg2+-dependent modulation of the Eag potassium channel. Channels (Austin) 4: 311-318. 20855938
Liu, Z., L. Hu, Z. Zhang, L. Song, P. Zhang, Z. Cao, and J. Ma. (2021). Isoliensinine Eliminates Afterdepolarizations Through Inhibiting Late Sodium Current and L-Type Calcium Current. Cardiovasc Toxicol 21: 67-78. 32770463
Liu, Z., Y. Jia, L. Song, Y. Tian, P. Zhang, P. Zhang, Z. Cao, and J. Ma. (2020). Antiarrhythmic effect of crotonoside by regulating sodium and calcium channels in rabbit ventricular myocytes. Life Sci 244: 117333. 31962132
Locke E.G., M. Bonilla, L. Liang, Y. Takita, K.W. Cunningham. (2000). A homolog of voltage-gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeast. Mol. Cell Biol. 20: 6686-6694 10958666
Loganathan, K., S. Moriya, M. Sivalingam, K.W. Ng, and I.S. Parhar. (2017). Sequence and localization of kcnk10a in the brain of adult zebrafish (Danio rerio). J Chem Neuroanat 86: 92-99. [Epub: Ahead of Print] 29074372
Loh, K.W.Z., C. Liu, T.W. Soong, and Z. Hu. (2023). β subunits of voltage-gated calcium channels in cardiovascular diseases. Front Cardiovasc Med 10: 1119729. 36818347
Lolicato, M., P.M. Riegelhaupt, C. Arrigoni, K.A. Clark, and D.L. Minor, Jr. (2014). Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K(2P) channels. Neuron. 84: 1198-1212. 25500157
Long, S.B., X. Tao, E.B. Campbell, and R. MacKinnon. (2007). Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450: 376-382. 18004376
Lopez-Cayuqueo KI., Pena-Munzenmayer G., Niemeyer MI., Sepulveda FV. and Cid LP. (2015). TASK-2 K(2)p K(+) channel: thoughts about gating and its fitness to physiological function. Pflugers Arch. 467(5):1043-53. 25315981
Lorca, R.A., X. Ma, and S.K. England. (2017). The unique N-terminal sequence of the BKCa channel α-subunit determines its modulation by β-subunits. PLoS One 12: e0182068. 28750098
Lorincz, A. and Z. Nusser. (2010). Molecular identity of dendritic voltage-gated sodium channels. Science 328: 906-909. 20466935
Lörinczi, &.#.2.0.1.;., J.C. Gómez-Posada, P. de la Peña, A.P. Tomczak, J. Fernández-Trillo, U. Leipscher, W. Stühmer, F. Barros, and L.A. Pardo. (2015). Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains. Nat Commun 6: 6672. 25818916
Lowe, J.S., O. Palygin, N. Bhasin, T.J. Hund, P.A. Boyden, E. Shibata, M.E. Anderson, and P.J. Mohler. (2008). Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J. Cell. Biol. 180: 173-186. 18180363
Lu, B., Y. Su, S. Das, J. Liu, J. Xia, and D. Ren. (2007). The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129: 371-383. 17448995
Lu, C.W., C.C. Wu, K.M. Chiu, M.Y. Lee, T.Y. Lin, and S.J. Wang. (2022). Inhibition of Synaptic Glutamate Exocytosis and Prevention of Glutamate Neurotoxicity by Eupatilin from in the Rat Cortex. Int J Mol Sci 23:. 36362193
Lu, H.J., X.B. Wu, and Q.Q. Wei. (2023). Ion channels in cancer-induced bone pain: from molecular mechanisms to clinical applications. Front Mol Neurosci 16: 1239599. 37664239
Lu, S., S. Ma, Y. Wang, T. Huang, Z. Zhu, and G. Zhao. (2017). Mus musculus-microRNA-449a ameliorates neuropathic pain by decreasing the level of KCNMA1 and TRPA1, and increasing the level of TPTE. Mol Med Rep. [Epub: Ahead of Print] 28498403
Lu, T.L. and S.N. Wu. (2023). Investigating the Impact of Selective Modulators on the Renin-Angiotensin-Aldosterone System: Unraveling Their Off-Target Perturbations of Transmembrane Ionic Currents. Int J Mol Sci 24:. 37762309
Lu, X., C. Luo, J. Wu, Y. Deng, X. Mu, T. Zhang, X. Yang, Q. Liu, Z. Li, S. Tang, Y. Hu, Q. Du, J. Xu, and R. Xie. (2023). Ion channels and transporters regulate nutrient absorption in health and disease. J Cell Mol Med 27: 2631-2642. 37638698
Lundberg, M.E., E.C. Becker, and S. Choe. (2013). MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis. PLoS One 8: e60993. 23737939
Luo, B., H. Zhang, D. Li, Q. Wu, W. Ge, T. Zhu, Y. Chen, Y. Huang, Y. Lin, and Z. Lai. (2023). [Genome-wide identification of the banana gene family and its expression analysis in response to low temperature and abscisic acid/methyl jasmonate]. Sheng Wu Gong Cheng Xue Bao 39: 2874-2896. 37584137
Lyashchenko, A.K., and G.R. Tibbs. (2008). Ion binding in the open HCN pacemaker channel pore: fast mechanisms to shape "slow" channels. J. Gen. Physiol. 131: 227-243. 18270171
Lyashchenko, A.K., K.J. Redd, P.A. Goldstein, and G.R. Tibbs. (2014). cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore. PLoS One 9: e101236. 24983358
Lyu, H., C.M. Boßelmann, K.M. Johannesen, M. Koko, J.D. Ortigoza-Escobar, S. Aguilera-Albesa, D. Garcia-Navas Núñez, T. Linnankivi, E. Gaily, H.J.A. van Ruiten, R. Richardson, C. Betzler, G. Horvath, E. Brilstra, N. Geerdink, D. Orsucci, A. Tessa, E. Gardella, Z. Fleszar, L. Schöls, H. Lerche, R.S. Møller, and Y. Liu. (2023). Clinical and electrophysiological features of SCN8A variants causing episodic or chronic ataxia. EBioMedicine 98: 104855. 38251463
Männikkö, R., F. Elinder, and H.P. Larsson. (2002). Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419: 837-841. 12397358
Ma, D., L. Zhong, Z. Yan, J. Yao, Y. Zhang, F. Ye, Y. Huang, D. Lai, W. Yang, P. Hou, and J. Guo. (2022). Structural mechanisms for the activation of human cardiac KCNQ1 channel by electro-mechanical coupling enhancers. Proc. Natl. Acad. Sci. USA 119: e2207067119. 36763058
Ma, T., M. Sato, M. Komiya, K. Kanomata, T. Watanabe, X. Feng, R. Miyata, D. Tadaki, F. Hirose, Y. Tozawa, and A. Hirano-Iwata. (2021). Lateral voltage as a new input for artificial lipid bilayer systems. Faraday Discuss. [Epub: Ahead of Print] 34874047
Ma, Y., R. Sugiura, A. Koike, H. Ebina, S.O. Sio, and T. Kuno. (2011). Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One 6: e22421. 21811607
Maamrah, B., K. Pocsai, T. Bayasgalan, A. Csemer, and B. Pál. (2023). KCNQ4 potassium channel subunit deletion leads to exaggerated acoustic startle reflex in mice. Neuroreport 34: 232-237. 36789839
Mackieh, R., R. Abou-Nader, R. Wehbe, C. Mattei, C. Legros, Z. Fajloun, and J.M. Sabatier. (2021). Voltage-Gated Sodium Channels: A Prominent Target of Marine Toxins. Mar Drugs 19:. 34677461
MacKinnon, R. (1995). Pore loops: an emerging theme in ion channel structure. Neuron 14: 889-892. 7538310
Mahling, R., A.M. Kilpatrick, and M.A. Shea. (2017). Backbone resonance assignments of complexes of human voltage-dependent sodium channel NaV1.2 IQ motif peptide bound to apo calmodulin and to the C-domain fragment of apo calmodulin. Biomol NMR Assign. [Epub: Ahead of Print] 28823028
Maingret, F., A.J. Patel, F. Lesage, M. Lazdunski, and E. Honoré. (1999). Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274: 26691-26696. 10480871
Maity, S., A. Marchesi, V. Torre, and M. Mazzolini. (2016). Structural Heterogeneity of CNGA1 Channels Revealed by Electrophysiology and Single-Molecule Force Spectroscopy. ACS Omega 1: 1205-1219. 31457189
Maity, S., M. Mazzolini, M. Arcangeletti, A. Valbuena, P. Fabris, M. Lazzarino, and V. Torre. (2015). Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy. Nat Commun 6: 7093. 25963832
Malak, O.A., F. Abderemane-Ali, Y. Wei, F.C. Coyan, G. Pontus, D. Shaya, C. Marionneau, and G. Loussouarn. (2020). Up-regulation of voltage-gated sodium channels by peptides mimicking S4-S5 linkers reveals a variation of the ligand-receptor mechanism. Sci Rep 10: 5852. 32246066
Maljevic, S., S. Vejzovic, M.K. Bernhard, A. Bertsche, S. Weise, M. Döcker, H. Lerche, J.R. Lemke, A. Merkenschlager, and S. Syrbe. (2016). Novel KCNQ3 Mutation in a Large Family with Benign Familial Neonatal Epilepsy: A Rare Cause of Neonatal Seizures. Mol Syndromol 7: 189-196. 27781029
Mallmann, R., K. Ondacova, L. Moravcikova, B. Jurkovicova-Tarabova, M. Pavlovicova, L. Lichvarova, V. Kominkova, N. Klugbauer, and L. Lacinova. (2019). Four novel interaction partners demonstrate diverse modulatory effects on voltage-gated Ca2.2 Ca channels. Pflugers Arch. [Epub: Ahead of Print] 30612149
Mallmann, R.T., T. Wilmes, L. Lichvarova, A. Bührer, B. Lohmüller, J. Castonguay, L. Lacinova, and N. Klugbauer. (2013). Tetraspanin-13 modulates voltage-gated CaV2.2 Ca2+ channels. Sci Rep 3: 1777. 23648579
Man, Q., Z. Gao, and K. Chen. (2023). Functional Potassium Channels in Macrophages. J. Membr. Biol. [Epub: Ahead of Print] 36622407
Mandala, V.S. and R. MacKinnon. (2022). Voltage-sensor movements in the Eag Kv channel under an applied electric field. Proc. Natl. Acad. Sci. USA 119: e2214151119. 36331999
Mandala, V.S. and R. MacKinnon. (2023). The membrane electric field regulates the PIP-binding site to gate the KCNQ1 channel. Proc. Natl. Acad. Sci. USA 120: e2301985120. 37192161
Manville, R.W. and G.W. Abbott. (2018). Gabapentin Is a Potent Activator of KCNQ3 and KCNQ5 Potassium Channels. Mol Pharmacol 94: 1155-1163. 30021858
Manville, R.W. and G.W. Abbott. (2019). Cilantro leaf harbors a potent potassium channel-activating anticonvulsant. FASEB J. fj201900485R. [Epub: Ahead of Print] 31311306
Maqoud, F., D. Tricarico, R. Mallamaci, A. Orlando, and F. Russo. (2023). The Role of Ion Channels in Functional Gastrointestinal Disorders (FGID): Evidence of Channelopathies and Potential Avenues for Future Research and Therapeutic Targets. Int J Mol Sci 24:. 37446251
Marcel D., Muller T., Hedrich R. and Geiger D. (2010). K+ transport characteristics of the plasma membrane tandem-pore channel TPK4 and pore chimeras with its vacuolar homologs. FEBS Lett. 584(11):2433-9. 20412800
Marchese-Rojas, M., &.#.1.9.3.;.A. Islas, C. Mancilla-Simbro, L. Millan-PerezPeña, J.S. León, and E.M. Salinas-Stefanon. (2022). Inhibition of the human neuronal sodium channel Na1.9 by ACEA (arachidonyl-2-chloroethylamide), an analogue of anandamide in a hNa1.9/rNa1.4 chimera, an experimental and in silico study. Neuroscience. [Epub: Ahead of Print] 36156289
Marchesi A., Mazzolini M. and Torre V. (2012). A ring of threonines in the inner vestibule of the pore of CNGA1 channels constitutes a binding site for permeating ions. J Physiol. 590(Pt 20):5075-90. 22869010
Marchesi, A., M. Arcangeletti, M. Mazzolini, and V. Torre. (2015). Proton transfer unlocks inactivation in cyclic nucleotide-gated A1 channels. J. Physiol. 593: 857-870. 25480799
Mari, S.A., J. Pessoa, S. Altieri, U. Hensen, L. Thomas, J.H. Morais-Cabral, and D.J. Müller. (2011). Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc. Natl. Acad. Sci. USA 108: 20802-20807. 22135457
Mariani, N.A.P., J.V. Silva, M. Fardilha, and E.J.R. Silva. (2023). Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update. [Epub: Ahead of Print] 37141450
Marini, C., A. Porro, A. Rastetter, C. Dalle, I. Rivolta, D. Bauer, R. Oegema, C. Nava, E. Parrini, D. Mei, C. Mercer, R. Dhamija, C. Chambers, C. Coubes, J. Thévenon, P. Kuentz, S. Julia, L. Pasquier, C. Dubourg, W. Carré, A. Rosati, F. Melani, T. Pisano, M. Giardino, A.M. Innes, Y. Alembik, S. Scheidecker, M. Santos, S. Figueiroa, C. Garrido, C. Fusco, D. Frattini, C. Spagnoli, A. Binda, T. Granata, F. Ragona, E. Freri, S. Franceschetti, L. Canafoglia, B. Castellotti, C. Gellera, R. Milanesi, M.M. Mancardi, D.R. Clark, F. Kok, K.L. Helbig, S. Ichikawa, L. Sadler, J. Neupauerová, P. Laššuthova, K. Šterbová, A. Laridon, E. Brilstra, B. Koeleman, J.R. Lemke, F. Zara, P. Striano, J. Soblet, G. Smits, N. Deconinck, A. Barbuti, D. DiFrancesco, E. LeGuern, R. Guerrini, B. Santoro, K. Hamacher, G. Thiel, A. Moroni, J.C. DiFrancesco, and C. Depienne. (2018). HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond. Brain 141: 3160-3178. 30351409
Marino, J., N. Bordag, S. Keller, and O. Zerbe. (2015). Mistic''s membrane association and its assistance in overexpression of a human GPCR are independent processes. Protein. Sci. 24: 38-48. 25297828
Marosi, M., M.N. Nenov, J. Di Re, N.M. Dvorak, M. Alshammari, and F. Laezza. (2022). Inhibition of the Akt/PKB Kinase Increases Na1.6-Mediated Currents and Excitability in CA1 Hippocampal Pyramidal Neuron.s. Int J Mol Sci 23:. 35163623
Martin, D.C., H. Kim, N.A. Mackin, L. Maldonado-Báez, C.C. Evangelista, Jr, V.G. Beaudry, D.D. Dudgeon, D.Q. Naiman, S.E. Erdman, and K.W. Cunningham. (2011). New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast. J. Biol. Chem. 286: 10744-10754. 21252230
Martinez-Moreno, R., E. Selga, H. Riuró, D. Carreras, M. Parnes, C. Srinivasan, M.F. Wangler, G.J. Pérez, F.S. Scornik, and R. Brugada. (2020). An Variant Affects Both Cardiac-Type (Na1.5) and Brain-Type (Na1.1) Sodium Currents and Contributes to Complex Concomitant Brain and Cardiac Disorders. Front Cell Dev Biol 8: 528742. 33134290
Mashanov, G.I., M. Nobles, S.C. Harmer, J.E. Molloy, and A. Tinker. (2010). Direct observation of individual KCNQ1 potassium channels reveals their distinctive diffusive behavior. J. Biol. Chem. 285: 3664-3675. 19940153
Matthies, D., C. Bae, G.E. Toombes, T. Fox, A. Bartesaghi, S. Subramaniam, and K.J. Swartz. (2018). Single-particle cryo-EM structure of a voltage-activated potassium channel in lipid nanodiscs. Elife 7:. 30109985
Mazzone, A., P.R. Strege, D.J. Tester, C.E. Bernard, G. Faulkner, R. De Giorgio, J.C. Makielski, V. Stanghellini, S.J. Gibbons, M.J. Ackerman, and G. Farrugia. (2008). A mutation in telethonin alters nav1.5 function. J. Biol. Chem. 283: 16537-16544. 18408010
McBride CM., Smith AM., Smith JL., Reloj AR., Velasco EJ., Powell J., Elayi CS., Bartos DC., Burgess DE. and Delisle BP. (2013). Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor. J Membr Biol. 246(5):355-64. 23546015
McClafferty, H., H. Runciman, and M.J. Shipston. (2020). Site specific deacylation by ABHD17a controls BK channel splice variant activity. J. Biol. Chem. [Epub: Ahead of Print] 32913120
McCoy JG., Rusinova R., Kim DM., Kowal J., Banerjee S., Jaramillo Cartagena A., Thompson AN., Kolmakova-Partensky L., Stahlberg H., Andersen OS. and Nimigean CM. (2014). A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics. J Biol Chem. 289(14):9535-46. 24515111
McCusker, E.C., C. Bagnéris, C.E. Naylor, A.R. Cole, N. D'Avanzo, C.G. Nichols, and B.A. Wallace. (2012). Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3: 1102. 23033078
McCusker, E.C., N. D'Avanzo, C.G. Nichols, and B.A. Wallace. (2011). Simplified bacterial "pore" channel provides insight into the assembly, stability, and structure of sodium channels. J. Biol. Chem. 286: 16386-16391. 21454659
McDonald, K., K. Larkin, D.J. Dickinson, A. Golden, X. Bai, and R. Doonan. (2023). Using CRISPR knock-in of fluorescent tags to examine isoform-specific expression of EGL-19 in. MicroPubl Biol 2023:. 37746064
McDonough, A.A. and R.A. Fenton. (2022). Potassium homeostasis: sensors, mediators, and targets. Pflugers Arch. [Epub: Ahead of Print] 35727363
McKenzie, C.E., I.C. Forster, M.S. Soh, A.M. Phillips, L.E. Bleakley, S.J. Russ-Hall, K.A. Myers, I.E. Scheffer, and C.A. Reid. (2023). Cation leak: a common functional defect causing developmental and epileptic encephalopathy. Brain Commun 5: fcad156. 37265603
McNair, W.P., G. Sinagra, M.R. Taylor, A. Di Lenarda, D.A. Ferguson, E.E. Salcedo, D. Slavov, X. Zhu, J.H. Caldwell, L. Mestroni, and. (2011). SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 57: 2160-2168. 21596231
Medeiros-Silva, J., A.J. Dregni, and M. Hong. (2024). Distinguishing Different Hydrogen-Bonded Helices in Proteins by Efficient H-Detected Three-Dimensional Solid-State NMR. Biochemistry 63: 181-190. 38127783
Mederos Y Schnitzler, M., S. Rinné, L. Skrobek, V. Renigunta, G. Schlichthörl, C. Derst, T. Gudermann, J. Daut, and R. Preisig-Müller. (2009). Mutation of histidine 105 in the T1 domain of the potassium channel Kv2.1 disrupts heteromerization with Kv6.3 and Kv6.4. J. Biol. Chem. 284: 4695-4704. 19074135
Medovoy, D., E. Perozo, and B. Roux. (2016). Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel. Biochim. Biophys. Acta. [Epub: Ahead of Print] 26896693
Meng, J.G., L. Liang, P.F. Jia, Y.C. Wang, H.J. Li, and W.C. Yang. (2020). Integration of ovular signals and exocytosis of a Ca channel by MLOs in pollen tube guidance. Nat Plants 6: 143-153. 32055051
Meszéna, D., A. Barlay, P. Boldog, K. Furuglyás, D. Cserpán, L. Wittner, I. Ulbert, and Z. Somogyvári. (2023). Seeing beyond the spikes: reconstructing the complete spatiotemporal membrane potential distribution from paired intra- and extracellular recordings. J. Physiol. 601: 3351-3376. 36511176
Mezghrani, A., A. Monteil, K. Watschinger, M.J. Sinnegger-Brauns, C. Barrère, E. Bourinet, J. Nargeot, J. Striessnig, and P. Lory. (2008). A destructive interaction mechanism accounts for dominant-negative effects of misfolded mutants of voltage-gated calcium channels. J. Neurosci. 28: 4501-4511. 18434528
Miceli, F., L. Carotenuto, V. Barrese, M.V. Soldovieri, E.L. Heinzen, A.M. Mandel, N. Lippa, L. Bier, D.B. Goldstein, E.C. Cooper, M.R. Cilio, M. Taglialatela, and T.T. Sands. (2020). A Novel Kv7.3 Variant in the Voltage-Sensing S Segment in a Family With Benign Neonatal Epilepsy: Functional Characterization and Rescue by β-Hydroxybutyrate. Front Physiol 11: 1040. 33013448
Miceli, F., M.V. Soldovieri, P. Ambrosino, M. De Maria, L. Manocchio, A. Medoro, and M. Taglialatela. (2015). Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels. Front Cell Neurosci 9: 259. 26236192
Michalakis, S., J. Reisert, H. Geiger, C. Wetzel, X. Zong, J. Bradley, M. Spehr, S. Hüttl, A. Gerstner, A. Pfeifer, H. Hatt, K.W. Yau, and M. Biel. (2006). Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping. J. Biol. Chem. 281: 35156-35166. 16980309
Michelucci, A., L. Sforna, A. Di Battista, F. Franciolini, and L. Catacuzzeno. (2023). Ca -activated K channels regulate cell volume in human glioblastoma cells. J Cell Physiol. [Epub: Ahead of Print] 37431808
Miller, A.N. and S.B. Long. (2012). Crystal structure of the human two-pore domain potassium channel K2P1. Science 335: 432-436. 22282804
Miller, W.C., A.J. Miles, and B.A. Wallace. (2016). Structure of the C-terminal domain of the prokaryotic sodium channel orthologue NsvBa. Eur Biophys. J. [Epub: Ahead of Print] 27106836
Miloshevsky, G.V., and P.C. Jordan. (2007). Open-state conformation of the KcsA K+ channel: Monte Carlo normal mode following simulations. Structure 15: 1654-1662. 18073114
Minor, D.L., Jr and F. Findeisen. (2010). Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 4: 459-474. 21139419
Mio, K., M. Mio, F. Arisaka, M. Sato, and C. Sato. (2010). The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions. Prog Biophys Mol Biol 103: 111-121. 20678983
Mio, K., T. Ogura, and C. Sato. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J Synchrotron Radiat 15: 211-214. 18421141
Miranda, P., M. Holmgren, and T. Giraldez. (2018). Voltage-dependent dynamics of the BK channel cytosolic gating ring are coupled to the membrane-embedded voltage sensor. Elife 7:. 30526860
Mishima, E., Y. Sato, K. Nanatani, N. Hoshi, J.K. Lee, N. Schiller, G. von Heijne, M. Sakaguchi, and N. Uozumi. (2016). The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel. Biochem. J. [Epub: Ahead of Print] 27694387
Mitchell, M.R. and S. Leibler. (2017). Elastic strain and twist analysis of protein structural data and allostery of the transmembrane channel KcsA. Phys Biol. [Epub: Ahead of Print] 29116053
Miyata, R., D. Tadaki, D. Yamaura, S. Araki, M. Sato, M. Komiya, T. Ma, H. Yamamoto, M. Niwano, and A. Hirano-Iwata. (2021). Parallel Recordings of Transmembrane hERG Channel Currents Based on Solvent-Free Lipid Bilayer Microarray. Micromachines (Basel) 12:. 33478052
Mokelke, E.A., M. Alloosh, and M. Sturek. (2022). Specificity of Ca-activated K channel modulation in atherosclerosis and aerobic exercise training. Curr Top Membr 90: 123-139. 36368871
Monteleone, S., A. Lieb, A. Pinggera, G. Negro, J.E. Fuchs, F. Hofer, J. Striessnig, P. Tuluc, and K.R. Liedl. (2017). Mechanisms Responsible for ω-Pore Currents in Cav Calcium Channel Voltage-Sensing Domains. Biophys. J. 113: 1485-1495. 28978442
Montini, G., J. Booker, A. Sula, and B.A. Wallace. (2018). Comparisons of voltage-gated sodium channel structures with open and closed gates and implications for state-dependent drug design. Biochem Soc Trans 46: 1567-1575. 30381338
Moran, Y. and H.H. Zakon. (2014). The evolution of the four subunits of voltage-gated calcium channels: ancient roots, increasing complexity, and multiple losses. Genome Biol Evol 6: 2210-2217. 25146647
Moran, Y., M.G. Barzilai, B.J. Liebeskind, and H.H. Zakon. (2015). Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol 218: 515-525. 25696815
Moreau, A., P. Gosselin-Badaroudine, and M. Chahine. (2014). Biophysics, pathophysiology, and pharmacology of ion channel gating pores. Front Pharmacol 5: 53. 24772081
Moreau, A., P. Gosselin-Badaroudine, M. Boutjdir, and M. Chahine. (2015). Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents. Front Pharmacol 6: 301. 26733869
Moreno, C., A. Oliveras, C. Bartolucci, C. Muñoz, A. de la Cruz, D.A. Peraza, J.R. Gimeno, M. Martín-Martínez, S. Severi, A. Felipe, P.D. Lambiase, T. Gonzalez, and C. Valenzuela. (2017). D242N, a KV7.1 LQTS mutation uncovers a key residue for IKs voltage dependence. J Mol. Cell Cardiol 110: 61-69. [Epub: Ahead of Print] 28739325
Morera FJ., Alioua A., Kundu P., Salazar M., Gonzalez C., Martinez AD., Stefani E., Toro L. and Latorre R. (2012). The first transmembrane domain (TM1) of beta2-subunit binds to the transmembrane domain S1 of alpha-subunit in BK potassium channels. FEBS Lett. 586(16):2287-93. 22710124
Morrill, J.A. and R. MacKinnon. (1999). Isolation of a single carboxyl proton binding site in the pore of a cyclic nucleotide-gated channel. J. Genet. Physiol. 114: 71-83. 10398693
Morton, M.J., A. Abohamed, A. Sivaprasadarao, and M. Hunter. (2005). pH sensing in the two-pore domain K+ channel, TASK2. Proc. Natl. Acad. Sci. USA 102: 16102-16106. 16239344
Mouline K., A.A. Very, F. Gaymard, J. Boucherez, G. Pilot, M. Devic, D. Bouchez, J.B. Thibaud, H. Sentenac. (2002). Pollen tube development and competitive ability are impaired by disruption of a Shaker K(+) channel in Arabidopsis. Genes Dev. 16:339-350. 11825875
Mu, Q., X. Zhao, F. Li, W. Li, X. Zhou, X. Lun, Y. Wang, D. Hua, Q. Liu, D. Xiao, and F. Meng. (2023). A novel strategy for screening mutations in the voltage-gated sodium channel gene of Aedes albopictus based on multiplex PCR-mass spectrometry minisequencing technology. Infect Dis Poverty 12: 74. 37580776
Munsey, T.S., A. Mohindra, S.P. Yusaf, A. Grainge, M.H. Wang, D. Wray, and A. Sivaprasadarao. (2002). Functional properties of Kch, a prokaryotic homologue of eukaryotic potassium channels. Biochem. Biophys. Res. Commun. 297: 10-16. 12220501
Muona, M., S.F. Berkovic, L.M. Dibbens, K.L. Oliver, S. Maljevic, M.A. Bayly, T. Joensuu, L. Canafoglia, S. Franceschetti, R. Michelucci, S. Markkinen, S.E. Heron, M.S. Hildebrand, E. Andermann, F. Andermann, A. Gambardella, P. Tinuper, L. Licchetta, I.E. Scheffer, C. Criscuolo, A. Filla, E. Ferlazzo, J. Ahmad, A. Ahmad, B. Baykan, E. Said, M. Topcu, P. Riguzzi, M.D. King, C. Ozkara, D.M. Andrade, B.A. Engelsen, A. Crespel, M. Lindenau, E. Lohmann, V. Saletti, J. Massano, M. Privitera, A.J. Espay, B. Kauffmann, M. Duchowny, R.S. Møller, R. Straussberg, Z. Afawi, B. Ben-Zeev, K.E. Samocha, M.J. Daly, S. Petrou, H. Lerche, A. Palotie, and A.E. Lehesjoki. (2015). A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat. Genet. 47: 39-46. 25401298
Murakami, A.M., K. Nagatomo, I. Miyoshi, S. Itagaki, Y. Niwa, and M. Murakami. (2023). A novel binding site between the voltage-dependent calcium channel Ca1.2 subunit and Caβ2 subunit discovered using a new analysis method for protein-protein interactions. Sci Rep 13: 13986. 37634019
Murry, C.R., I.V. Agarkova, J.S. Ghosh, F.C. Fitzgerald, R.M. Carlson, B. Hertel, K. Kukovetz, O. Rauh, G. Thiel, and J.L. Van Etten. (2020). Genetic Diversity of Potassium Ion Channel Proteins Encoded by Chloroviruses That Infect. Viruses 12:. 32585987
Nagaraja, S., L.F. Queme, M.C. Hofmann, S.G. Tewari, M.P. Jankowski, and J. Reifman. (2021). Identification of Key Factors Driving the Response of Muscle Sensory Neuron.s to Noxious Stimuli. Front Neurosci 15: 719735. 34566566
Nakagawa, H., T. Munakata, and A. Sunami. (2019). Mexiletine Block of Voltage-Gated Sodium Channels: Isoform- and State-Dependent Drug-Pore Interactions. Mol Pharmacol 95: 236-244. 30593458
Nakajo, K., M.H. Ulbrich, Y. Kubo, and E.Y. Isacoff. (2010). Stoichiometry of the KCNQ1 - KCNE1 ion channel complex. Proc. Natl. Acad. Sci. USA 107: 18862-18867. 20962273
Nakamura, K., M. Kato, H. Osaka, S. Yamashita, E. Nakagawa, K. Haginoya, J. Tohyama, M. Okuda, T. Wada, S. Shimakawa, K. Imai, S. Takeshita, H. Ishiwata, D. Lev, T. Lerman-Sagie, D.E. Cervantes-Barragán, C.E. Villarroel, M. Ohfu, K. Writzl, B. Gnidovec Strazisar, S. Hirabayashi, D. Chitayat, D. Myles Reid, K. Nishiyama, H. Kodera, M. Nakashima, Y. Tsurusaki, N. Miyake, K. Hayasaka, N. Matsumoto, and H. Saitsu. (2013). Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 81: 992-998. 23935176
Nakamura, R.L. and R.F. Gaber. (2009). Ion selectivity of the Kat1 K+ channel pore. Mol. Membr. Biol. 26: 293-308. 19742379
Nakao H., Ikeda K., Iwamoto M., Shimizu H., Oiki S., Ishihama Y. and Nakano M. (2015). pH-dependent promotion of phospholipid flip-flop by the KcsA potassium channel. Biochim Biophys Acta. 1848(1 Pt A):145-50. 25312694
Nasilli, G., T.M. de Waal, G.A. Marchal, G. Bertoli, M.W. Veldkamp, E. Rothenberg, S. Casini, and C.A. Remme. (2024). Decreasing microtubule detyrosination modulates Nav1.5 subcellular distribution and restores sodium current in mdx cardiomyocytes. Cardiovasc Res. [Epub: Ahead of Print] 38395031
Naso, A., I. Dreyer, L. Pedemonte, I. Testa, J.L. Gomez-Porras, C. Usai, B. Mueller-Rueber, A. Diaspro, F. Gambale, and C. Picco. (2009). The role of the C-terminus for functional heteromerization of the plant channel KDC1. Biophys. J. 96: 4063-4074. 19450478
Natale, A.M., P.E. Deal, and D.L. Minor, Jr. (2021). Structural insights into the mechanisms and pharmacology of K potassium channels. J. Mol. Biol. 166995. [Epub: Ahead of Print] 33887333
Nathan, S., S.B. Gabelli, J.B. Yoder, L. Srinivasan, R.W. Aldrich, G.F. Tomaselli, M. Ben-Johny, and L.M. Amzel. (2021). Structural basis of cytoplasmic NaV1.5 and NaV1.4 regulation. J Gen Physiol 153:. 33306788
Naula, C.M., F.M. Logan, P.E. Wong, M.P. Barrett, and R.J. Burchmore. (2010). A glucose transporter can mediate ribose uptake: definition of residues that confer substrate specificity in a sugar transporter. J. Biol. Chem. 285: 29721-29728. 20601430
Nelson, R.D., G. Kuan, M.H. Saier, Jr., and M. Montal. (1999). Modular assembly of voltage-gated channel proteins: a sequence analysis and phylogenetic study. J. Mol. Microbiol. Biotechnol. 2: 281-287. 10943557
Neupärtl, M., C. Meyer, I. Woll, F. Frohns, M. Kang, J.L. Van Etten, D. Kramer, B. Hertel, A. Moroni, and G. Thiel. (2008). Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection. Virology 372(2): 340-348. 18045641
Nguyen, H.M., C.A. Galea, G. Schmunk, B.J. Smith, R.A. Edwards, R.S. Norton, and K.G. Chandy. (2013). Intracellular Trafficking of the KV1.3 Potassium Channel Is Regulated by the Prodomain of a Matrix Metalloprotease. J. Biol. Chem. 288: 6451-6464. 23300077
Nguyen, N.H. and J.L. Brodsky. (2023). The cellular pathways that maintain the quality control and transport of diverse potassium channels. Biochim. Biophys. Acta. Gene Regul Mech 1866: 194908. 36638864
Niemeyer, M.I., L.P. Cid, L.F. Barros, and F.V. Sepúlveda. (2001). Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J. Biol. Chem. 276: 43166-43174. 11560934
Nieves-Cordones, M. and I. Gaillard. (2014). Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels. Plant Signal Behav 9: e972892. 25482770
Nieves-Cordones, M., A. Chavanieu, L. Jeanguenin, C. Alcon, W. Szponarski, S. Estaran, I. Chérel, S. Zimmermann, H. Sentenac, and I. Gaillard. (2014). Distinct amino acids in the C-linker domain of the Arabidopsis K+ channel KAT2 determine its subcellular localization and activity at the plasma membrane. Plant Physiol. 164: 1415-1429. 24406792
Nieves-Cordones, M., F. Alemán, V. Martínez, and F. Rubio. (2014). K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol. 171: 688-695. 24810767
Niitsu, A., A. Egawa, K. Ikeda, K. Tachibana, and T. Fujiwara. (2018). Veratridine binding to a transmembrane helix of sodium channel Na1.4 determined by solid-state NMR. Bioorg Med Chem 26: 5644-5653. 30389410
Niu, X., Y. Yang, Y. Chen, M. Cheng, M. Liu, C. Ding, X. Tian, Z. Yang, Y. Jiang, and Y. Zhang. (2022). Genotype-phenotype correlation of CACNA1A variants in children with epilepsy. Dev Med Child Neurol 64: 105-111. 34263451
Novelli, V., T. Faultless, M. Cerrone, M. Care, M. Manzoni, S.L. Bober, A. Adler, F. De-Giorgio, D. Spears, and M.H. Gollob. (2023). Enhancing the interpretation of genetic observations in KCNQ1 in unselected populations: relevance to secondary findings. Europace 25:. 37897496
Núñez, E., A. Muguruza-Montero, and A. Villarroel. (2020). Atomistic Insights of Calmodulin Gating of Complete Ion Channels. Int J Mol Sci 21:. 32075037
Nurani, G., M. Radford, K. Charalambous, A.O. O'Reilly, N.B. Cronin, S. Haque, and B.A. Wallace. (2008). Tetrameric bacterial sodium channels: characterization of structure, stability, and drug binding. Biochemistry 47: 8114-8121. 18620425
O''Halloran, D.M., S. Altshuler-Keylin, X.D. Zhang, C. He, C. Morales-Phan, Y. Yu, J.A. Kaye, C. Brueggemann, T.Y. Chen, and N.D. L''Etoile. (2017). Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans. Sci Rep 7: 169. 28279024
O''Reilly, A.O., A. Lattrell, A.J. Miles, A.B. Klinger, C. Nau, B.A. Wallace, and A. Lampert. (2017). Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine. Eur Biophys. J. [Epub: Ahead of Print] 28825121
O'Brien, J.E. and M.H. Meisler. (2013). Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 4: 213. 24194747
O'Brien, J.E., L.M. Sharkey, C.N. Vallianatos, C. Han, J.C. Blossom, T. Yu, S.G. Waxman, S.D. Dib-Hajj, and M.H. Meisler. (2012). Interaction of Voltage-gated Sodium Channel Nav1.6 (SCN8A) with Microtubule-associated Protein Map1b. J. Biol. Chem. 287: 18459-18466. 22474336
Oliver, K.L., S. Franceschetti, C.J. Milligan, M. Muona, S.A. Mandelstam, L. Canafoglia, A.M. Boguszewska-Chachulska, A.D. Korczyn, F. Bisulli, C. Di Bonaventura, F. Ragona, R. Michelucci, B. Ben-Zeev, R. Straussberg, F. Panzica, J. Massano, D. Friedman, A. Crespel, B.A. Engelsen, F. Andermann, E. Andermann, K. Spodar, A. Lasek-Bal, P. Riguzzi, E. Pasini, P. Tinuper, L. Licchetta, E. Gardella, M. Lindenau, A. Wulf, R.S. Møller, F. Benninger, Z. Afawi, G. Rubboli, C.A. Reid, S. Maljevic, H. Lerche, A.E. Lehesjoki, S. Petrou, and S.F. Berkovic. (2017). Myoclonus epilepsy and ataxia due to KCNC1 mutation: Analysis of 20 cases and K+ channel properties. Ann Neurol 81: 677-689. 28380698
Olson, T.M., A.E. Alekseev, X.K. Liu, S. Park, L.V. Zingman, M. Bienengraeber, S. Sattiraju, J.D. Ballew, A. Jahangir, and A. Terzic. (2006). Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet 15: 2185-2191. 16772329
Ooi, L., S. Gigout, L. Pettinger, and N. Gamper. (2013). Triple Cysteine Module within M-Type K+ Channels Mediates Reciprocal Channel Modulation by Nitric Oxide and Reactive Oxygen Species. J. Neurosci. 33: 6041-6046. 23554485
Orias, M., H. Velázquez, F. Tung, G. Lee, and G.V. Desir. (1997). Cloning and localization of a double-pore K channel, KCNK1: exclusive expression in distal nephron segments. Am. J. Physiol. Renal Physiol 273: F663-F666. 29587102
Ostacolo, C., F. Miceli, V. Di Sarno, P. Nappi, N. Iraci, M.V. Soldovieri, T. Ciaglia, P. Ambrosino, V. Vestuto, A. Lauritano, S. Musella, G. Pepe, M.G. Basilicata, M. Manfra, D.R. Perinelli, E. Novellino, A. Bertamino, I.M. Gomez-Monterrey, P. Campiglia, and M. Taglialatela. (2020). Synthesis and Pharmacological Characterization of Conformationally Restricted Retigabine Analogues as Novel Kv7 Channel Activators. J Med Chem 63: 163-185. 31815462
Osterbur ML., Zheng R., Marion R., Walsh C. and McDonald TV. (2015). An Interdomain KCNH2 Mutation Produces an Intermediate Long QT Syndrome. Hum Mutat. 36(8):764-73. 25914329
Ottschytsch, N., A.L. Raes, J.P. Timmermans, and D.J. Snyders. (2005). Domain analysis of Kv6.3, an electrically silent channel. J. Physiol. 568: 737-747. 16096342
Ouyang, Q., M. Goeritz, and R.M. Harris-Warrick. (2007). Panulirus interruptus Ih-channel gene PIIH: modification of channel properties by alternative splicing and role in rhythmic activity. J Neurophysiol 97: 3880-3892. 17409170
Owusu-Mensah, A., J. Treat, J. Bernardi, R. Pfeiffer, R. Goodrow, B. Tsevi, V. Lam, M. Audette, J.M. Cordeiro, and M. Deo. (2024). Identification and characterization of two novel KCNH2 mutations contributing to long QT syndrome. PLoS One 19: e0287206. 38181028
Page, D.A., K.E.A. Magee, J. Li, M. Jung, and E.C. Young. (2020). Cytoplasmic Autoinhibition in HCN Channels is Regulated by the Transmembrane Region. J. Membr. Biol. [Epub: Ahead of Print] 32146488
Paidhungat, M., and S. Garrett. (1997). A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol. Cell Biol. 17: 6339-6347. 9343395
Paldi, T. and M. Gurevitz. (2010). Coupling between residues on S4 and S1 defines the voltage-sensor resting conformation in NaChBac. Biophys. J. 99: 456-463. 20643063
Palomba, N.P., K. Martinello, G. Cocozza, S. Casciato, A. Mascia, G. Di Gennaro, R. Morace, V. Esposito, H. Wulff, C. Limatola, and S. Fucile. (2021). ATP-evoked intracellular Ca transients shape the ionic permeability of human microglia from epileptic temporal cortex. J Neuroinflammation 18: 44. 33588880
Pan, X., Z. Li, Q. Zhou, H. Shen, K. Wu, X. Huang, J. Chen, J. Zhang, X. Zhu, J. Lei, W. Xiong, H. Gong, B. Xiao, and N. Yan. (2018). Structure of the human voltage-gated sodium channel Na1.4 in complex with β1. Science 362:. 30190309
Pan, Y. and T.R. Cummins. (2020). Distinct functional alterations in SCN8A epilepsy mutant channels. J. Physiol. 598: 381-401. 31715021
Pandey, A., J. P, S. Tripathi, and C. Gopi Mohan. (2012). Harnessing Human N-type Ca2+ Channel Receptor by Identifying the Atomic Hotspot Regions for Its Structure-Based Blocker Design. Mol Inform 31: 643-657. 27477815
Papanatsiou, M., J. Petersen, L. Henderson, Y. Wang, J.M. Christie, and M.R. Blatt. (2019). Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363: 1456-1459. 30923223
Pappa, A.M., H.Y. Liu, W. Traberg-Christensen, Q. Thiburce, A. Savva, A. Pavia, A. Salleo, S. Daniel, and R.M. Owens. (2020). Optical and Electronic Ion Channel Monitoring from Native Human Membranes. ACS Nano. [Epub: Ahead of Print] 32469490
Parfenova, L.V., Crane, B.M., and Rothberg, B.S. (2006). Modulation of MthK potassium channel activity at the intracellular entrance to the pore. J. Biol. Chem. 281: 21131-21138. 16728395
Parfenova, L.V., K. Abarca-Heidemann, B.M. Crane, and B.S. Rothberg. (2007). Molecular architecture and divalent cation activation of TvoK, a prokaryotic potassium channel. J. Biol. Chem. 282: 24302-24309. 17588939
Park, C.Y., A. Shcheglovitov, and R. Dolmetsch. (2010). The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 330: 101-105. 20929812
Parrasia, S., A. Mattarei, A. Furlan, M. Zoratti, and L. Biasutto. (2019). Small-Molecule Modulators of Mitochondrial Channels as Chemotherapeutic Agents. Cell Physiol Biochem 53: 11-43. 31834993
Pascual-Caro, C., M. Berrocal, A.M. Lopez-Guerrero, A. Alvarez-Barrientos, E. Pozo-Guisado, C. Gutierrez-Merino, A.M. Mata, and F.J. Martin-Romero. (2018). STIM1 deficiency is linked to Alzheimer''s disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca entry. J Mol Med (Berl) 96: 1061-1079. 30088035
Patel A.J., F. Maingret, V. Magnone, M. Fosset, M. Lazdunski, E. Honoré. (2000). TWIK-2, an inactivating 2P domain K+ channel. J Biol Chem. 275:28722-30. 10887187
Patel, N.H., J. Johannesen, K. Shah, S.K. Goswami, N.J. Patel, D. Ponnalagu, A.R. Kohut, and H. Singh. (2018). Inhibition of BK negatively alters cardiovascular function. Physiol Rep 6: e13748. 29932499
Patel, S., D. Churamani, and E. Brailoiu. (2017). NAADP-evoked Ca2+ signals through two-pore channel-1 require arginine residues in the first S4-S5 linker. Cell Calcium 68: 1-4. 29129203
Pau, V.P., F.J. Smith, A.B. Taylor, L.V. Parfenova, E. Samakai, M.M. Callaghan, K. Abarca-Heidemann, P.J. Hart, and B.S. Rothberg. (2011). Structure and function of multiple Ca2+-binding sites in a K+ channel regulator of K+ conductance (RCK) domain. Proc. Natl. Acad. Sci. USA 108: 17684-17689. 21997217
Pau, V.P., Y. Zhu, Z. Yuchi, Q.Q. Hoang, and D.S. Yang. (2007). Characterization of the C-terminal domain of a potassium channel from Streptomyces lividans (KcsA). J. Biol. Chem. 282: 29163-29169. 17693406
Paul, A., Mubashra, and S. Singh. (2021). Identification of a novel calcium activated potassium channel from Leishmania donovani and in silico predictions of its antigenic features. Acta Trop 105922. [Epub: Ahead of Print] 33878308
Paul, A., S.S. Chumbale, A. Lakra, V. Kumar, D.S. Alhat, and S. Singh. (2023). Insights into potassium channel family and their biological functions. 3 Biotech 13: 266. 37425093
Paulhus, K. and E. Glasscock. (2023). Novel Genetic Variants Expand the Functional, Molecular, and Pathological Diversity of Channelopathy. Int J Mol Sci 24:. 37240170
Paulhus, K., L. Ammerman, and E. Glasscock. (2020). Clinical Spectrum of Mutations: New Insights into Episodic Ataxia and Epilepsy Comorbidity. Int J Mol Sci 21:. 32316562
Payandeh, J., T. Scheuer, N. Zheng, and W.A. Catterall. (2011). The crystal structure of a voltage-gated sodium channel. Nature 475: 353-358. 21743477
Pearlstein, R.A., C.J. Dickson, and V. Hornak. (2016). Contributions of the membrane dipole potential to the function of voltage-gated cation channels and modulation by small molecule potentiators. Biochim. Biophys. Acta. 1859: 177-194. [Epub: Ahead of Print] 27836643
Pedarzani, P., J.E. McCutcheon, G. Rogge, B.S. Jensen, P. Christophersen, C. Hougaard, D. Strobaek, and M. Stocker. (2005). Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current IAHP and modulates the firing properties of hippocampal pyrimidal neurons. 16239218
Peiter, E., M. Fischer, K. Sidaway, S.K. Roberts, and D. Sanders. (2005). The Saccharomyces cerevisiae Ca2+ channel Cch1pMid1p is essential for tolerance to cold stress and iron toxicity. FEBS Lett. 579: 5697-5703. 16223494
Pelletier, L. and M. Savignac. (2022). [Ca1.4 calcium channels in the pathophysiology of psoriasis: A new therapeutic target]. Med Sci (Paris) 38: 634-636. 36094228
Peloquin, J.B., R. Rehak, C.J. Doering, and J.E. McRory. (2007). Functional analysis of congenital stationary night blindness type-2 CACNA1F mutations F742C, G1007R, and R1049W. Neuroscience. 150(2):335-345. 17949918
Peretz, A., L. Pell, Y. Gofman, Y. Haitin, L. Shamgar, E. Patrich, P. Kornilov, O. Gourgy-Hacohen, N. Ben-Tal, and B. Attali. (2010). Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier. Proc. Natl. Acad. Sci. USA 107: 15637-15642. 20713704
Pérez-Verdaguer, M., J. Capera, R. Martínez-Mármol, M. Camps, N. Comes, M.M. Tamkun, and A. Felipe. (2016). Caveolin interaction governs Kv1.3 lipid raft targeting. Sci Rep 6: 22453. 26931497
Perissinotti, L.L., P.M. De Biase, J. Guo, P.C. Yang, M.C. Lee, C.E. Clancy, H.J. Duff, and S.Y. Noskov. (2018). Determinants of Isoform-Specific Gating Kinetics of hERG1 Channel: Combined Experimental and Simulation Study. Front Physiol 9: 207. 29706893
Peroz, D., N. Rodriguez, F. Choveau, I. Baró, J. Mérot, and G. Loussouarn. (2008). Kv7.1 (KCNQ1) properties and channelopathies. J. Physiol. 586(7): 1785-1789. 18174212
Perry, M.D., S. Wong, C.A. Ng, and J.I. Vandenberg. (2013). Hydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels. J Gen Physiol 142: 275-288. 23980196
Peschel, A., F.C. Cardoso, A.A. Walker, T. Durek, M.R.L. Stone, N. Braga Emidio, P.E. Dawson, M. Muttenthaler, and G.F. King. (2020). Two for the Price of One: Heterobivalent Ligand Design Targeting Two Binding Sites on Voltage-Gated Sodium Channels Slows Ligand Dissociation and Enhances Potency. J Med Chem. [Epub: Ahead of Print] 33078946
Peters, C.J., M. Vaid, A.J. Horne, D. Fedida, and E.A. Accili. (2009). The molecular basis for the actions of KVbeta1.2 on the opening and closing of the KV1.2 delayed rectifier channel. Channels (Austin) 3: 314-322. 19713757
Peters, S., B.A. Thompson, M. Perrin, P. James, D. Zentner, J.M. Kalman, J.I. Vandenberg, and D. Fatkin. (2021). Arrhythmic Phenotypes Are a Defining Feature of Dilated Cardiomyopathy-Associated Variants: A Systematic Review. Circ Genom Precis Med CIRCGEN121003432. [Epub: Ahead of Print] 34949099
Phan, K., C.A. Ng, E. David, D. Shishmarev, P.W. Kuchel, J.I. Vandenberg, and M.D. Perry. (2017). The S1 Helix Critically Regulates the Finely-tuned Gating of Kv11.1 Channels. J. Biol. Chem. [Epub: Ahead of Print] 28280240
Phartiyal, P., E.M. Jones, and G.A. Robertson. (2007). Heteromeric assembly of human ether-à-go-go-related gene (hERG) 1a/1b channels occurs cotranslationally via N-terminal interactions. J. Biol. Chem. 282: 9874-9882. 17272276
Philippar, K., K. Büchsenschütz, M. Abshagen, I. Fuchs, D. Geiger, B. Lacombe, and R. Hedrich. (2003). The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. J. Biol. Chem. 278: 16973-16981. 12611901
Pinilla, E., S. Comerma-Steffensen, J. Prat-Duran, L. Rivera, V.V. Matchkov, N.H. Buus, and U. Simonsen. (2021). Transglutaminase 2 Inhibitor LDN 27219 Age-Dependently Lowers Blood Pressure and Improves Endothelium-Dependent Vasodilation in Resistance Arteries. Hypertension 77: 216-227. 33249864
Platoshyn, O., C.V. Remillard, I. Fantozzi, M. Mandegar, T.T. Sison, S. Zhang, E. Burg, and J.X. Yuan. (2004). Diversity of voltage-dependent K+ channels in human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell Mol Physiol 287: L226-238. 15047570
Pliushcheuskaya, P. and G. Künze. (2023). Recent Advances in Computer-Aided Structure-Based Drug Design on Ion Channels. Int J Mol Sci 24:. 37298178
Plugge, B., S. Gazzarrini, M. Nelson, R. Cerana, J.L. Van Etten, C. Derst, D. DiFrancesco, A. Moroni, and G. Thiel. (2000). A potassium channel protein encoded by Chlorella virus PBCV-1. Science 287: 1641. 10698737
Po, S., S. Roberds, D.J. Snyders, M.M. Tamkun, and P.B. Bennett. (1993). Heteromultimeric assembly of human potassium channels. Molecular basis of a transient outward current? Circ Res 72: 1326-1336. 8495559
Poirier, K., G. Viot, L. Lombardi, C. Jauny, P. Billuart, and T. Bienvenu. (2017). Loss of Function of KCNC1 is associated with intellectual disability without seizures. Eur J Hum Genet 25: 560-564. 28145425
Pope, L., C. Arrigoni, H. Lou, C. Bryant, A. Gallardo-Godoy, A.R. Renslo, and D.L. Minor, Jr. (2018). Protein and Chemical Determinants of BL-1249 Action and Selectivity for K Channels. ACS Chem Neurosci. [Epub: Ahead of Print] 30089357
Porro, A., A. Saponaro, R. Castelli, B. Introini, A. Hafez Alkotob, G. Ranjbari, U. Enke, J. Kusch, K. Benndorf, B. Santoro, D. DiFrancesco, G. Thiel, and A. Moroni. (2024). A high affinity switch for cAMP in the HCN pacemaker channels. Nat Commun 15: 843. 38287019
Porro, A., G. Thiel, A. Moroni, and A. Saponaro. (2020). cyclic AMP Regulation and Its Command in the Pacemaker Channel HCN4. Front Physiol 11: 771. 32733276
Powl, A.M., A.J. Miles, and B.A. Wallace. (2012). Transmembrane and extramembrane contributions to membrane protein thermal stability: studies with the NaChBac sodium channel. Biochim. Biophys. Acta. 1818: 889-895. 22226848
Pozdnyakov, I., O. Matantseva, and S. Skarlato. (2018). Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Sci Rep 8: 3539. 29476068
Prindle, A., J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo, and G.M. Süel. (2015). Ion channels enable electrical communication in bacterial communities. Nature 527: 59-63. 26503040
Prontera, P., P. Sarchielli, S. Caproni, C. Bedetti, L.M. Cupini, P. Calabresi, and C. Costa. (2018). Epilepsy in hemiplegic migraine: Genetic mutations and clinical implications. Cephalalgia 38: 361-373. 28058944
Ptak, C.P., L.G. Cuello, and E. Perozo. (2005). Electrostatic interaction of a K+ channel RCK domain with charged membrane surfaces. Biochemistry 44: 62-71. 15628846
Púa-Torrejón, R.C., E. González-Alguacil, V. Soto-Insuga, T. Moreno-Cantero, N.V. Ortiz-Cabrera, M.S. Pérez-Poyato, M.L. Ruiz Falcó-Rojas, and J.J. García-Peñas. (2021). [Variability of the clinical expression of KCNB1 encephalopathy]. Rev Neurol 73: 403-408. 34877642
Pyo, Y.J., M. Gierth, J.I. Schroeder, and M.H. Cho. (2010). High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol. 153: 863-875. 20413648
Qureshi, S.F., A. Ali, P. John, A.P. Jadhav, A. Venkateshwari, H. Rao, M.P. Jayakrishnan, C. Narasimhan, J. Shenthar, K. Thangaraj, and P. Nallari. (2015). Mutational analysis of SCN5A gene in long QT syndrome. Meta Gene 6: 26-35. 26401487
Qureshi, S.F., A. Ali, V. Ananthapur, M.P. Jayakrishnan, N. Calambur, K. Thangaraj, and P. Nallari. (2013). Novel mutations of KCNQ1 in Long QT syndrome. Indian Heart J 65: 552-560. 24206879
Radhakrishnan, K., M.A. Kamp, S.A. Siapich, J. Hescheler, M. Lüke, and T. Schneider. (2011). Ca(v)2.3 Ca2+ channel interacts with the G1-subunit of V-ATPase. Cell Physiol Biochem 27: 421-432. 21691059
Radicke, S., T. Riedel, D. Cotella, K. Turnow, U. Ravens, M. Schaefer, and E. Wettwer. (2013). Accessory subunits alter the temperature sensitivity of Kv4.3 channel complexes. J Mol. Cell Cardiol 56: 8-18. 23291429
Raisch, T., A. Brockmann, U. Ebbinghaus-Kintscher, J. Freigang, O. Gutbrod, J. Kubicek, B. Maertens, O. Hofnagel, and S. Raunser. (2021). Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM. Nat Commun 12: 7164. 34887422
Raja, M., N.K. Olrichs, E. Vales, and H. Schrempf. (2012). Transferring knowledge towards understanding the pore stabilizing variations in K+ channels: pore stability in K+ channels. J. Bioenerg. Biomembr. 44: 199-205. 22350010
Rajabian, A., F. Rajabian, F. Babaei, M. Mirzababaei, M. Nassiri-Asl, and H. Hosseinzadeh. (2022). Interaction of Medicinal Plants and Their Active Constituents With Potassium Ion Channels: A Systematic Review. Front Pharmacol 13: 831963. 35273505
Rajendran, R., R. Krishnan, J.O. Kim, and M.J. Oh. (2023). Regulatory effects of potassium channel blockers on potassium channel genes upon nervous necrosis virus infection in sevenband grouper Hyporthodus septumfasciatus. Gene 890: 147815. [Epub: Ahead of Print] 37739197
Rajkovic, J., V. Djokic, M. Gostimirovic, L. Gojkovic-Bukarica, M. Martorell, J. Sharifi-Rad, and R. Novakovic. (2020). Potassium channels on smooth muscle as a molecular target for plant-derived Resveratrol. Cell Mol Biol (Noisy-le-grand) 66: 133-144. 32583792
Ramaswami, M., M. Gautam, A. Kamb, B. Rudy, M.A. Tanouye, and M.K. Mathew. (1990). Human potassium channel genes: Molecular cloning and functional expression. Mol. Cell Neurosci 1: 214-223. 19912772
Ramos Gomes F., Romaniello V., Sanchez A., Weber C., Narayanan P., Psol M. and Pardo LA. (2015). Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes. J Biol Chem. 290(51):30351-65. 26518875
Randich, A.M., L.G. Cuello, S.S. Wanderling, and E. Perozo. (2014). Biochemical and structural analysis of the hyperpolarization-activated K+ channel MVP. Biochemistry 53: 1627-1636. 24490868
Rash, J.E., K.G. Vanderpool, T. Yasumura, J. Hickman, J.T. Beatty, and J.I. Nagy. (2016). KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 115: 1836-1859. 26763782
Rasmussen, T. (2016). How do mechanosensitive channels sense membrane tension? Biochem Soc Trans 44: 1019-1025. 27528747
Rauh, O., M. Urban, L.M. Henkes, T. Winterstein, T. Greiner, J.L. Van Etten, A. Moroni, S.M. Kast, G. Thiel, and I. Schroeder. (2017). Identification of Intrahelical Bifurcated H-Bonds as a New Type of Gate in K+ Channels. J. Am. Chem. Soc. [Epub: Ahead of Print] 28499087
Raybaud, A., Y. Dodier, P. Bissonnette, M. Simoes, D.G. Bichet, R. Sauvé, and L. Parent. (2006). The role of the GX9GX3G motif in the gating of high voltage-activated Ca2+ channels. J. Biol. Chem. 281: 39424-39436. 17038321
Reed, A.P., G. Bucci, F. Abd-Wahab, and S.J. Tucker. (2016). Dominant-Negative Effect of a Missense Variant in the TASK-2 (KCNK5) K+ Channel Associated with Balkan Endemic Nephropathy. PLoS One 11: e0156456. 27228168
Rehak, R., T.M. Bartoletti, J.D. Engbers, G. Berecki, R.W. Turner, and G.W. Zamponi. (2013). Low Voltage Activation of KCa1.1 Current by Cav3-KCa1.1 Complexes. PLoS One 8: e61844. 23626738
Reher, T.A., Z. Wang, C.H. Hsueh, P.C. Chang, Z. Pan, M. Kumar, J. Patel, J. Tan, C. Shen, Z. Chen, M.C. Fishbein, M. Rubart, P. Boyden, and P.S. Chen. (2017). Small-Conductance Calcium-Activated Potassium Current in Normal Rabbit Cardiac Purkinje Cells. J Am Heart Assoc 6:. 28550095
Reimão, J.Q., F.A. Colombo, V.L. Pereira-Chioccola, and A.G. Tempone. (2011). In vitro and experimental therapeutic studies of the calcium channel blocker bepridil: detection of viable Leishmania (L.) chagasi by real-time PCR. Exp Parasitol 128: 111-115. 21354141
Reinson, K., E. Õiglane-Shlik, I. Talvik, U. Vaher, A. Õunapuu, M. Ennok, R. Teek, S. Pajusalu, &.#.2.2.0.;. Murumets, T. Tomberg, S. Puusepp, A. Piirsoo, T. Reimand, and K. Õunap. (2016). Biallelic CACNA1A mutations cause early onset epileptic encephalopathy with progressive cerebral, cerebellar, and optic nerve atrophy. Am J Med Genet A. [Epub: Ahead of Print] 27250579
Rems, L., M.A. Kasimova, I. Testa, and L. Delemotte. (2020). Pulsed Electric Fields Can Create Pores in the Voltage Sensors of Voltage-Gated Ion Channels. Biophys. J. [Epub: Ahead of Print] 32559411
Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. (2001). A prokaryotic voltage-gated sodium channel. Science 294: 2372-2375. 11743207
Renart, M.L., F.N. Barrera, M.L. Molina, J.A. Encinar, J.A. Poveda, A.M. Fernandez, J. Gomez, and J.M. Gonzalez-Ros. (2006). Effects of conducting and blocking ions on the structure and stability of the potassium channel KcsA. J. Biol . Chem. 281: 29905-29915. 16815844
Reyes Fernandez, P.C., C.S. Wright, A.N. Masterson, X. Yi, T.V. Tellman, A. Bonteanu, K. Rust, M.L. Noonan, K.E. White, K.J. Lewis, U. Sankar, J.M. Hum, G. Bix, D. Wu, A.G. Robling, R. Sardar, M.C. Farach-Carson, and W.R. Thompson. (2022). Gabapentin Disrupts Binding of Perlecan to the αδ Voltage Sensitive Calcium Channel Subunit and Impairs Skeletal Mechanosensation. Biomolecules 12:. 36551284
Rice, K.L., S.E. Webb, and A.L. Miller. (2022). Localized TPC1-mediated Ca2+ release from endolysosomes contributes to myoseptal junction development in zebrafish. J Cell Sci. [Epub: Ahead of Print] 35393618
Rickert, V., D. Kramer, A.L. Schubert, C. Sommer, E. Wischmeyer, and N. Üçeyler. (2019). Globotriaosylceramide-induced reduction of K1.1 channel activity and activation of the Notch1 signaling pathway in skin fibroblasts of male Fabry patients with pain. Exp Neurol 324: 113134. [Epub: Ahead of Print] 31778662
Rivera-Torres, I.O., T.B. Jin, M. Cadene, B.T. Chait, and S.F. Poget. (2016). Discovery and characterisation of a novel toxin from Dendroaspis angusticeps, named Tx7335, that activates the potassium channel KcsA. Sci Rep 6: 23904. 27044983
Rizzi, S., C. Schwarzer, L. Kremser, H.H. Lindner, and H.G. Knaus. (2015). Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain. Biochem Biophys Rep 4: 291-298. 29124216
Robertson, G.A. and J.H. Morais-Cabral. (2019). hERG Function in Light of Structure. Biophys. J. [Epub: Ahead of Print] 31669064
Rocheleau, J.M., and W.R. Kobertz. (2007). KCNE Peptides Differently Affect Voltage Sensor Equilibrium and Equilibration Rates in KCNQ1 K+ Channels. J. Gen. Physiol. 131: 59-68. 18079560
Rödström, K.E.J., A.K. Kiper, W. Zhang, S. Rinné, A.C.W. Pike, M. Goldstein, L.J. Conrad, M. Delbeck, M.G. Hahn, H. Meier, M. Platzk, A. Quigley, D. Speedman, L. Shrestha, S.M.M. Mukhopadhyay, N.A. Burgess-Brown, S.J. Tucker, T. Müller, N. Decher, and E.P. Carpenter. (2020). A lower X-gate in TASK channels traps inhibitors within the vestibule. Nature. [Epub: Ahead of Print] 32499642
Roller, A., G. Natura, H. Bihler, C.L. Slayman, and A. Bertl. (2008). Functional consequences of leucine and tyrosine mutations in the dual pore motifs of the yeast K+ channel, Tok1p. Pflugers Arch 456: 883-896. 18421473
Romanenko, V., T. Nakamoto, A. Srivastava, J.E. Melvin, and T. Begenisich. (2006). Molecular identification and physiological roles of parotid acinar cell maxi-K channels. J. Biol. Chem. 281: 27964-27972. 16873365
Romito, O., M. Guéguinou, W. Raoul, O. Champion, A. Robert, M. Trebak, C. Goupille, and M. Potier-Cartereau. (2022). Calcium signaling: A therapeutic target to overcome resistance to therapies in cancer. Cell Calcium 108: 102673. 36410063
Roosild, T.P., J. Greenwald, M. Vega, S. Castronovo, R. Riek, and S. Choe. (2005). NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307: 1317-1321. 15731457
Rosendo-Pineda, M.J., C.M. Moreno, and L. Vaca. (2020). Role of ion channels during cell division. Cell Calcium 91: 102258. [Epub: Ahead of Print] 32736154
Roux, B. and R. MacKinnon. (1999). The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285: 100-102. 10390357
Rowe, A.H., Y. Xiao, M.P. Rowe, T.R. Cummins, and H.H. Zakon. (2013). Voltage-gated sodium channel in grasshopper mice defends against bark scorpion toxin. Science 342: 441-446. 24159039
Rusconi, R., P. Scalmani, R.R. Cassulini, G. Giunti, A. Gambardella, S. Franceschetti, G. Annesi, E. Wanke, and M. Mantegazza. (2007). Modulatory Proteins Can Rescue a Trafficking Defective Epileptogenic Nav1.1 Na+ Channel Mutant. J. Neurosci. 27(41):11037-11036.
Russell, T., D. Gangotia, and G. Barry. (2022). Assessing the potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication. Biomed Pharmacother 156: 113850. 36411658
Ruta, V., J. Chen, and R. MacKinnon. (2005). Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123: 463-475. 16269337
Ruta, V., Y. Jiang, A. Lee, J. Chan, and R. MacKinnon. (2003). Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422: 180-185. 12629550
Ryan, M.J., L. Gao, F.I. Valiyaveetil, M.T. Zanni, and A.A. Kananenka. (2023). Probing Ion Configurations in the KcsA Selectivity Filter with Single-Isotope Labels and 2D IR Spectroscopy. J. Am. Chem. Soc. 145: 18529-18537. 37578394
Saavedra-Rodriguez, K., L. Urdaneta-Marquez, S. Rajatileka, M. Moulton, A.E. Flores, I. Fernandez-Salas, J. Bisset, M. Rodriguez, P.J. McCall, M.J. Donnelly, H. Ranson, J. Hemingway, and W.C. Black, 4th. (2007). A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol 16: 785-798. 18093007
Saha, J., K. Giri, and S. Roy. (2020). Identification and characterization of differentially expressed genes in the rice root following exogenous application of spermidine during salt stress. Genomics 112: 4125-4136. 32650100
Sahoo, N., R. Schönherr, T. Hoshi, and S.H. Heinemann. (2012). Cysteines control the N- and C-linker-dependent gating of KCNH1 potassium channels. Biochim. Biophys. Acta. 1818: 1187-1195. 22310694
Sahu, I.D., G. Dixit, W.D. Reynolds, R. Kaplevatsky, B.D. Harding, C.K. Jaycox, R.M. McCarrick, and G.A. Lorigan. (2020). Characterization of the Human KCNQ1 Voltage Sensing Domain (VSD) in Lipodisq Nanoparticles for Electron Paramagnetic Resonance (EPR) Spectroscopic Studies of Membrane Proteins. J Phys Chem B 124: 2331-2342. 32130007
Sait, L.G., A. Sula, M.R. Ghovanloo, D. Hollingworth, P.C. Ruben, and B.A. Wallace. (2020). Cannabidiol interactions with voltage-gated sodium channels. Elife 9:. 33089780
Saito, S., N. Hoshi, L. Zulkifli, S. Widyastuti, S. Goshima, I. Dreyer, and N. Uozumi. (2017). Identification of regions responsible for the function of the plant K+ channels KAT1 and AKT2 in Saccharomyces cerevisiae and Xenopus laevis oocytes. Channels (Austin) 1-7. [Epub: Ahead of Print] 28933647
Sajman, J., M. Trus, D. Atlas, and E. Sherman. (2017). The L-type Voltage-Gated Calcium Channel co-localizes with Syntaxin 1A in nano-clusters at the plasma membrane. Sci Rep 7: 11350. 28900128
Sakurai, Y., A.A. Kolokoltsov, C.C. Chen, M.W. Tidwell, W.E. Bauta, N. Klugbauer, C. Grimm, C. Wahl-Schott, M. Biel, and R.A. Davey. (2015). Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347: 995-998. 25722412
Salkoff, L. and T. Jegla. (1995). Surfing the DNA databases for K+ channels nets yet more diversity. Neuron 15: 489-492. 7546728
Salvage, S.C., K. Jeevaratnam, C.L. Huang, and A.P. Jackson. (2022). Cardiac sodium channel complexes and arrhythmia: structural and functional roles of the β1 and β3 subunits. J. Physiol. [Epub: Ahead of Print] 36354758
Sanchez-Sandoval, A.L., Z. Herrera Carrillo, C.E. Díaz Velásquez, D.M. Delgadillo, H.M. Rivera, and J.C. Gomora. (2018). Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels. PLoS One 13: e0193490. 29474447
Sánchez-Solano, A., A.A. Islas, T. Scior, B. Paiz-Candia, L. Millan-PerezPeña, and E.M. Salinas-Stefanon. (2016). Characterization of specific allosteric effects of the Na+ channel β1 subunit on the Nav1.4 isoform. Eur Biophys. J. [Epub: Ahead of Print] 28012039
Sansom, M.S. (1998). Ion channels: a first view of K+ channels in atomic glory. Curr. Biol. 8: R450-452. 9651671
Santi, C.M., A. Yuan, G. Fawcett, Z.W. Wang, A. Butler, M.L. Nonet, A. Wei, P. Rojas, and L. Salkoff. (2003). Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference. Proc. Natl. Acad. Sci. USA 100: 14391-14396. 14612577
Santos, J.S., S.M. Grigoriev, and M. Montal. (2008). Molecular template for a voltage sensor in a novel K+ channel. III. Functional reconstitution of a sensorless pore module from a prokaryotic Kv channel. J Gen Physiol 132: 651-666. 19029373
Sanyal, S.K., M. Awasthi, P. Ranjan, S. Sharma, G.K. Pandey, and S. Kateriya. (2023). Characterization of Chlamydomonas voltage-gated calcium channel and its interaction with photoreceptor support VGCCs modulated photobehavioral response in green alga. Int J Biol Macromol 125492. [Epub: Ahead of Print] 37343610
Saponaro, A., D. Bauer, M.H. Giese, P. Swuec, A. Porro, F. Gasparri, A.S. Sharifzadeh, A. Chaves-Sanjuan, L. Alberio, G. Parisi, G. Cerutti, O.B. Clarke, K. Hamacher, H.M. Colecraft, F. Mancia, W.A. Hendrickson, S.A. Siegelbaum, D. DiFrancesco, M. Bolognesi, G. Thiel, B. Santoro, and A. Moroni. (2021). Gating movements and ion permeation in HCN4 pacemaker channels. Mol. Cell 81: 2929-2943.e6. 34166608
Savalli N., Pantazis A., Yusifov T., Sigg D. and Olcese R. (2012). The contribution of RCK domains to human BK channel allosteric activation. J Biol Chem. 287(26):21741-50. 22556415
Scherer, S., M. Arheit, J. Kowal, X. Zeng, and H. Stahlberg. (2014). Single particle 3D reconstruction for 2D crystal images of membrane proteins. J Struct Biol 185: 267-277. 24382495
Schiffer, C., S. Rieger, C. Brenker, S. Young, H. Hamzeh, D. Wachten, F. Tüttelmann, A. Röpke, U.B. Kaupp, T. Wang, A. Wagner, C. Krallmann, S. Kliesch, C. Fallnich, and T. Strünker. (2020). Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca signaling. EMBO. J. 39: e102363. 31957048
Schmidpeter, P.A.M., J.T. Petroff, 2nd, L. Khajoueinejad, A. Wague, C. Frankfater, W.W.L. Cheng, C.M. Nimigean, and P.M. Riegelhaupt. (2023). Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1. Nat Commun 14: 1077. 36841877
Schmidt, D., Q.X. Jiang, and R. MacKinnon. (2006). Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444: 775-779. 17136096
Schmidt, R.S., J.P. Macêdo, M.E. Steinmann, A.G. Salgado, P. Bütikofer, E. Sigel, D. Rentsch, and P. Mäser. (2018). Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J. 285: 1012-1023. 29063677
Schreiber, J.A., A. Derksen, G. Goerges, S. Schütte, J. Sörgel, A.K. Kiper, N. Strutz-Seebohm, T. Ruck, S.G. Meuth, N. Decher, and G. Seebohm. (2023). Cloxyquin activates hTRESK by allosteric modulation of the selectivity filter. Commun Biol 6: 745. 37464013
Schroeder, J.I. (2003). Knockout of the guard cell K+ out channel and stomatal movements. Proc. Natl. Acad. Sci. USA 100: 4976-4977. 12704226
Schünke, S., M. Stoldt, J. Lecher, U.B. Kaupp, and D. Willbold. (2011). Structural insights into conformational changes of a cyclic nucleotide-binding domain in solution from Mesorhizobium loti K1 channel. Proc. Natl. Acad. Sci. USA 108: 6121-6126. 21430265
Schwarzer, S., L. Kolacna, H. Lichtenberg-Fraté, H. Sychrova, and J. Ludwig. (2008). Functional expression of the voltage-gated neuronal mammalian potassium channel rat ether à go-go1 in yeast. FEMS Yeast Res 8(3): 405-413. 18248412
Schwenk, J., G. Zolles, N.G. Kandias, I. Neubauer, H. Kalbacher, M. Covarrubias, B. Fakler, and D. Bentrop. (2008). NMR analysis of KChIP4a reveals structural basis for control of surface expression of Kv4 channel complexes. J. Biol. Chem. 283: 18937-18946. 18458082
Scicchitano, P., S. Carbonara, G. Ricci, C. Mandurino, M. Locorotondo, G. Bulzis, M. Gesualdo, A. Zito, R. Carbonara, I. Dentamaro, G. Riccioni, and M.M. Ciccone. (2012). HCN Channels and Heart Rate. Molecules 17: 4225-4235. 22481543
Seebohm, G., P. Westenskow, F. Lang, and M.C. Sanguinetti. (2005). Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels. J. Physiol. 563: 359-368. 15649981
Seeger, H.M., L. Aldrovandi, A. Alessandrini, and P. Facci. (2010). Changes in single K+ channel behavior induced by a lipid phase transition. Biophys. J. 99: 3675-3683. 21112292
Seikel, E. and J.S. Trimmer. (2009). Convergent modulation of Kv4.2 channel alpha subunits by structurally distinct DPPX and KChIP auxiliary subunits. Biochemistry 48: 5721-5730. 19441798
Selvakumar, D., M.J. Drescher, J.R. Dowdall, K.M. Khan, J.S. Hatfield, N.A. Ramakrishnan, and D.G. Drescher. (2012). CNGA3 is expressed in inner ear hair cells and binds to an intracellular C-terminus domain of EMILIN1. Biochem. J. 443: 463-476. 22248097
Senatore A. and Spafford JD. (2013). A uniquely adaptable pore is consistent with NALCN being an ion sensor. Channels (Austin). 7(2):60-8. 23442378
Shakkottai, V.G., I. Regaya, H. Wulff, Z. Fajloun, H. Tomita, M. Fathallah, M.D. Cahalan, J.J. Gargus, J.-M. Sabatier, and K.G. Chandy. (2001). Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem. 276: 43145-43151. 11527975
Sharma, A., G. Rahman, J. Gorelik, and A. Bhargava. (2023). Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 12:. 36766802
Sharmin, N. and W.J. Gallin. (2016). Intramolecular interactions that control voltage sensitivity in the jShak1 potassium channel from Polyorchis penicillatus. J Exp Biol. [Epub: Ahead of Print] 27872215
Shaya, D., M. Kreir, R.A. Robbins, S. Wong, J. Hammon, A. Brüggemann, and D.L. Minor, Jr. (2011). Voltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins. Proc. Natl. Acad. Sci. USA 108: 12313-12318. 21746903
She, J., J. Guo, and Y. Jiang. (2022). Structure and Function of Plant and Mammalian TPC Channels. Handb Exp Pharmacol. [Epub: Ahead of Print] 35879575
She, J., J. Guo, Q. Chen, W. Zeng, Y. Jiang, and X.C. Bai. (2018). Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature. [Epub: Ahead of Print] 29562233
Sheikh, A.S. and K. Ranjan. (2014). Brugada syndrome: a review of the literature. Clin Med 14: 482-489. 25301907
Shen, H., Q. Zhou, X. Pan, Z. Li, J. Wu, and N. Yan. (2017). Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355:. 28183995
Shen, H., Z. Li, Y. Jiang, X. Pan, J. Wu, B. Cristofori-Armstrong, J.J. Smith, Y.K.Y. Chin, J. Lei, Q. Zhou, G.F. King, and N. Yan. (2018). Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362:. 30049784
Shepard A.R., Rae J.L.. (1999). Electrically silent potassium channel subunits from human lens epithelium. Am. J. Physiol. 277: C412-424 10484328
Shi W., R.S. Wymore, H.S. Wang, Z. Pan, I.S. Cohen, D. McKinnon, J.E. Dixon. (1997). Identification of two nervous system-specific members of the erg potassium channel gene family. J. Neurosci. 17: 9423-9432 9390998
Shi, J., G. Krishnamoorthy, Y. Yang, L. Hu, N. Chaturvedi, D. Harilal, J. Qin, and J. Cui. (2002). Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418: 876-880. 12192410
Shi, N., S. Ye, A. Alam, L. Chen, and Y. Jiang. (2006). Atomic structure of a Na+- and K+-conducting channel. Nature 440: 570-574. 16467789
Shimizu, H., M. Iwamoto, T. Konno, A. Nihei, Y.C. Sasaki, and S. Oiki. (2008). Global twisting motion of single molecular KcsA potassium channel upon gating. Cell 132: 67-78. 18191221
Shimomura, T., K. Irie, H. Nagura, T. Imai, and Y. Fujiyoshi. (2011). Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels. J. Biol. Chem. 286: 7409-7417. 21177850
Shishmarev, D. (2020). Excitation-contraction coupling in skeletal muscle: recent progress and unanswered questions. Biophys Rev. [Epub: Ahead of Print] 31950344
Sigworth, F.J. (1993). Voltage gating of ion channels. Quart. Rev. Biophys. 27: 1-40. 7520590
Silverå Ejneby, M., A. Gromova, N.E. Ottosson, S. Borg, A. Estrada-Mondragón, S. Yazdi, P. Apostolakis, F. Elinder, and L. Delemotte. (2021). Resin-acid derivatives bind to multiple sites on the voltage-sensor domain of the Shaker potassium channel. J Gen Physiol 153:. 33683319
Silverman, W.R., and L. Heginbotham. (2007). The MlotiK1 channel transports ions along the canonical conduction pore. FEBS Lett. 581: 5024-5028. 17935718
Silverman, W.R., J.P. Bannister, and D.M. Papazian. (2004). Binding site in eag voltage sensor accommodates a variety of ions and is accessible in closed channel. Biophys. J. 87: 3110-3121. 15347589
Singh, A., M. Gebhart, R. Fritsch, M.J. Sinnegger-Brauns, C. Poggiani, J.C. Hoda, J. Engel, C. Romanin, J. Striessnig, and A. Koschak. (2008). Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain. J. Biol. Chem. 283: 20733-20744. 18482979
Siotto, F., C. Martin, O. Rauh, J.L. Van Etten, I. Schroeder, A. Moroni, and G. Thiel. (2014). Viruses infecting marine picoplancton encode functional potassium ion channels. Virology 466-467: 103-111. 25441713
Skerritt, M.R. and D.L. Campbell. (2007). Role of S4 positively charged residues in the regulation of Kv4.3 inactivation and recovery. Am. J. Physiol. Cell Physiol. 293: C906-914. 17581856
Sklodowski, K., J. Riedelsberger, N. Raddatz, G. Riadi, J. Caballero, I. Chérel, W. Schulze, A. Graf, and I. Dreyer. (2017). The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2. Sci Rep 7: 44611. 28300158
Ślęczkowska, M., R. Almomani, M. Marchi, E. Salvi, B.T.A. de Greef, M. Sopacua, J.G.J. Hoeijmakers, P. Lindsey, S.G. Waxman, G. Lauria, C.G. Faber, H.J.M. Smeets, and M.M. Gerrits. (2022). Peripheral Ion Channel Genes Screening in Painful Small Fiber Neuropathy. Int J Mol Sci 23:. 36430572
Sleiman, Y., S. Reiken, A. Charrabi, F. Jaffré, L.R. Sittenfeld, J.L. Pasquié, S. Colombani, B.B. Lerman, S. Chen, A.R. Marks, J.W. Cheung, T. Evans, A. Lacampagne, and A.C. Meli. (2023). Personalized medicine in the dish to prevent calcium leak associated with short-coupled polymorphic ventricular tachycardia in patient-derived cardiomyocytes. Stem Cell Res Ther 14: 266. 37740238
Smith, J.J., T.R. Cummins, S. Alphy, and K.M. Blumenthal. (2007). Molecular interactions of the gating modifier toxin ProTx-II with NaV 1.5: implied existence of a novel toxin binding site coupled to activation. J. Biol. Chem. 282: 12687-12697. 17339321
Soh, H. and S.A. Goldstein. (2008). I SA channel complexes include four subunits each of DPP6 and Kv4.2. J. Biol. Chem. 283: 15072-15077. 18364354
Sojo, L.E., R. Kwan, C. Dang, M. Tung, and J. Li. (2019). On the Feasibility of Quantifying Sodium Channel Na 1.6 Protein in Mouse Brain using targeted UHPLC-ESI- MRM Mass Spectrometry. Rapid Commun Mass Spectrom. [Epub: Ahead of Print] 30724401
Sokolov, S., T. Scheuer, and W.A. Catterall. (2007). Gating pore current in an inherited ion channelopathy. Nature 446: 76-78. 17330043
Sokolov, S., T. Scheuer, and W.A. Catterall. (2010). Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations. J Gen Physiol 136: 225-236. 20660662
Soldovieri, M.V., Castaldo, P., Iodice, L., Miceli, F., Barrese, V., Bellini, G., Miraglia del Giudice, E., Pascotto, A., Bonatti, S., Annunziato, L., and Taglialatela M. (2006). Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J. Biol. Chem. 281: 418-428. 16260777
Soldovieri, M.V., P. Ambrosino, I. Mosca, F. Miceli, C. Franco, L.M.T. Canzoniero, B. Kline-Fath, E.C. Cooper, C. Venkatesan, and M. Taglialatela. (2019). Epileptic Encephalopathy In A Patient With A Novel Variant In The Kv7.2 S2 Transmembrane Segment: Clinical, Genetic, and Functional Features. Int J Mol Sci 20:. 31295832
Song, K.C., A.V. Molina, R. Chen, I.A. Gagnon, Y.H. Koh, B. Roux, and T.R. Sosnick. (2021). Folding and misfolding of potassium channel monomers during assembly and tetramerization. Proc. Natl. Acad. Sci. USA 118:. 34413192
Song, L., Z.F. Zhang, L.K. Hu, P.H. Zhang, Z.Z. Cao, Z.P. Liu, P.P. Zhang, and J.H. Ma. (2020). Curcumin, a Multi-Ion Channel Blocker That Preferentially Blocks Late Na Current and Prevents I/R-Induced Arrhythmias. Front Physiol 11: 978. 32973546
Sonkusare, S.K., A.D. Bonev, J. Ledoux, W. Liedtke, M.I. Kotlikoff, T.J. Heppner, D.C. Hill-Eubanks, and M.T. Nelson. (2012). Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597-601. 22556255
Sottocornola, B., S. Visconti, S. Orsi, S. Gazzarrini, S. Giacometti, C. Olivari, L. Camoni, P. Aducci, M. Marra, A. Abenavoli, G. Thiel, and A. Moroni. (2006). The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J. Biol. Chem. 281: 35735-35741. 16990282
Spencer, K.A., C.B. Woods, H.M. Worstman, S.C. Johnson, J.M. Ramirez, P.G. Morgan, and M.M. Sedensky. (2023). TREK-1 and TREK-2 knockout mice are not resistant to halothane or isoflurane. Anesthesiology. [Epub: Ahead of Print] 37027798
Splawski, I., Yoo, D.S., Stotz, S.C., Cherry, A., Clapham, D.E., and Keating, M.T. (2006). CACNA1H mutations in autism spectrum disorders. J. Biol. Chem. 281: 22085-22091. 16754686
Spork, S., J.A. Hiss, K. Mandel, M. Sommer, T.W. Kooij, T. Chu, G. Schneider, U.G. Maier, and J.M. Przyborski. (2009). An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot. Cell. 8: 1134-1145. 19502583
Starace, D.M. and F. Bezanilla. (2004). A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427: 548-553. 14765197
Stingl, K., S. Brandt, E.M. Uhlemann, R. Schmid, K. Altendorf, C. Zeilinger, C. Ecobichon, A. Labigne, E.P. Bakker, and H. de Reuse. (2007). Channel-mediated potassium uptake in Helicobacter pylori is essential for gastric colonization. EMBO. J. 26: 232-241. 17159901
Stringer, R.N., L. Cmarko, G.W. Zamponi, M. De Waard, and N. Weiss. (2023). Electrophysiological characterization of a Ca3.2 calcium channel missense variant associated with epilepsy and hearing loss. Mol Brain 16: 68. 37735453
Strünker, T., N. Goodwin, C. Brenker, N.D. Kashikar, I. Weyand, R. Seifert, and U.B. Kaupp. (2011). The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471: 382-386. 21412338
Struyk, A.F. and S.C. Cannon. (2007). A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. J Gen Physiol 130: 11-20. 17591984
Su, K., H. Kyaw, P. Fan, Z. Zeng, B.K. Shell, K.C. Carter, and Y. Li. (1997). Isolation, characterization, and mapping of two human potassium channels. Biochem. Biophys. Res. Commun. 241: 675-681. 9434767
Suh, B.C., K. Leal, and B. Hille. (2010). Modulation of high-voltage activated Ca2+ channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron. 67: 224-238. 20670831
Sun, A.X., Q. Yuan, M. Fukuda, W. Yu, H. Yan, G.G.Y. Lim, M.H. Nai, G.A. D''Agostino, H.D. Tran, Y. Itahana, D. Wang, H. Lokman, K. Itahana, S.W.L. Lim, J. Tang, Y.Y. Chang, M. Zhang, S.A. Cook, O.J.L. Rackham, C.T. Lim, E.K. Tan, H.H. Ng, K.L. Lim, Y.H. Jiang, and H.S. Je. (2019). Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science 366: 1486-1492. 31857479
Sun, J., S. Luo, K.J. Suetterlin, J. Song, J. Huang, W. Zhu, J. Xi, L. Zhou, J. Lu, J. Lu, C. Zhao, M.G. Hanna, R. Männikkö, E. Matthews, and K. Qiao. (2021). Clinical and genetic spectrum of a Chinese cohort with SCN4A gene mutations. Neuromuscul Disord. [Epub: Ahead of Print] 33965302
Sun, L. and F.T. Horrigan. (2022). A gating lever and molecular logic gate that couple voltage and calcium sensor activation to opening in BK potassium channels. Sci Adv 8: eabq5772. 36516264
Sung, T.S., S.B. Moon, B.A. Perrino, K.M. Sanders, and S.D. Koh. (2022). Altered functional responses by PAR1 agonist in murine dextran sodium sulphate-treated colon. Sci Rep 12: 16746. 36202914
Suzuki, T. and K. Takimoto. (2004). Selective expression of HERG and Kv2 channels influences proliferation of uterine cancer cells. Int J Oncol 25: 153-159. 15202000
Suzuki, T., A. Hansen, and M.C. Sanguinetti. (2016). Hydrophobic interactions between the S5 segment and the pore helix stabilizes the closed state of Slo2.1 potassium channels. Biochim. Biophys. Acta. 1858: 783-792. 26724206
Swayne, L.A., A. Mezghrani, P. Lory, J. Nargeot, and A. Monteil. (2010). The NALCN ion channel is a new actor in pancreatic β-cell physiology. Islets 2: 54-56. 21099296
Sweet, T.B. and D.H. Cox. (2008). Measurements of the BKCa channel's high-affinity Ca2+ binding constants: effects of membrane voltage. J Gen Physiol 132: 491-505. 18955592
Szabó, G., V. Farkas, M. Grunnet, A. Mohácsi, and P.P. Nánási. (2011). Enhanced repolarization capacity: new potential antiarrhythmic strategy based on HERG channel activation. Curr. Med. Chem. 18: 3607-3621. 21774764
Szabò, I., J. Bock, A. Jekle, M. Soddemann, C. Adams, F. Lang, M. Zoratti, and E. Gulbins. (2005). A novel potassium channel in lymphocyte mitochondria. J. Biol. Chem. 280: 12790-12798. 15632141
Szanto, T.G., F. Papp, F. Zakany, Z. Varga, C. Deutsch, and G. Panyi. (2023). Molecular rearrangements in S6 during slow inactivation in Shaker-IR potassium channels. J Gen Physiol 155:. 37212728
Tada, Y., K. Kume, Y. Matsuda, T. Kurashige, Y. Kanaya, R. Ohsawa, H. Morino, H. Tabu, S. Kaneko, T. Suenaga, A. Kakizuka, and H. Kawakami. (2020). Genetic screening for potassium channel mutations in Japanese autosomal dominant spinocerebellar ataxia. J Hum Genet. [Epub: Ahead of Print] 31907387
Takahashi, S., K. Inamura, J. Yarimizu, M. Yamazaki, N. Murai, and K. Ni. (2017). Neurochemical and neuropharmacological characterization of ASP2905, a novel potent selective inhibitor of the potassium channel KCNH3. Eur J Pharmacol 810: 26-35. 28552344
Tang, C., X. Zhou, P.T. Nguyen, Y. Zhang, Z. Hu, C. Zhang, V. Yarov-Yarovoy, P.G. DeCaen, S. Liang, and Z. Liu. (2017). A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel. FASEB J. 31: 3167-3178. 28400471
Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. (2003). Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425: 531-535. 14523450
Tao, X. and R. MacKinnon. (2019). Molecular structures of the human Slo1 K channel in complex with β4. Elife 8:. 31815672
Tao, X., A. Lee, W. Limapichat, D.A. Dougherty, and R. MacKinnon. (2010). A gating charge transfer center in voltage sensors. Science 328: 67-73. 20360102
Tariq, K., A. Ali, T.G.E. Davies, E. Naz, L. Naz, S. Sohail, M. Hou, and F. Ullah. (2019). RNA interference-mediated knockdown of voltage-gated sodium channel (MpNa) gene causes mortality in peach-potato aphid, Myzus persicae. Sci Rep 9: 5291. 30923355
Tavassoli, T., A. Kolevzon, A.T. Wang, J. Curchack-Lichtin, D. Halpern, L. Schwartz, S. Soffes, L. Bush, D. Grodberg, G. Cai, and J.D. Buxbaum. (2014). De novo SCN2A splice site mutation in a boy with Autism spectrum disorder. BMC Med Genet 15: 35. 24650168
Taylor, K.C. and C.R. Sanders. (2016). Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids. Biochim. Biophys. Acta. [Epub: Ahead of Print] 27818172
Telezhkin V., Thomas AM., Harmer SC., Tinker A. and Brown DA. (2013). A basic residue in the proximal C-terminus is necessary for efficient activation of the M-channel subunit Kv7.2 by PI(4,5)P(2). Pflugers Arch. 465(7):945-53. 23291709
Tempone, A.G., N.N. Taniwaki, and J.Q. Reimão. (2009). Antileishmanial activity and ultrastructural alterations of Leishmania (L.) chagasi treated with the calcium channel blocker nimodipine. Parasitol Res 105: 499-505. 19352709
Terlau, H. and W. Stühmer. (1998). Structure and function of voltage-gated ion channels. Naturwissenschaften 85: 437-444. 9802045
Thiel G., Baumeister D., Schroeder I., Kast SM., Van Etten JL. and Moroni A. (2011). Minimal art: or why small viral K(+) channels are good tools for understanding basic structure and function relations. Biochim Biophys Acta. 1808(2):580-8. 20417613
Thomas, D., L.D. Plant, C.M. Wilkens, Z.A. McCrossan, and S.A. Goldstein. (2008). Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron. 58: 859-870. 18579077
Thomson, A.S. and B.S. Rothberg. (2010). Voltage-dependent inactivation gating at the selectivity filter of the MthK K+ channel. J Gen Physiol 136: 569-579. 20937694
Tian, F., Y. Qiu, X. Lan, M. Li, H. Yang, and Z. Gao. (2019). A Small-Molecule Compound Selectively Activates K2P Channel TASK-3 by Acting at Two Distant Clusters of Residues. Mol Pharmacol 96: 26-35. 31015283
Tian, L., H. McClafferty, L. Chen, and M.J. Shipston. (2008). Reversible tyrosine protein phosphorylation regulates large conductance voltage- and calcium-activated potassium channels via cortactin. J. Biol. Chem. 283: 3067-3076. 18039661
Tian, L., O. Jeffries, H. McClafferty, A. Molyvdas, I.C. Rowe, F. Saleem, L. Chen, J. Greaves, L.H. Chamberlain, H.G. Knaus, P. Ruth, and M.J. Shipston. (2008). Palmitoylation gates phosphorylation-dependent regulation of BK potassium channels. Proc. Natl. Acad. Sci. USA 105: 21006-21011. 19098106
Tian, M.Q., R.K. Li, F. Yang, X.M. Shu, J. Li, J. Chen, L.Y. Peng, X.H. Yu, and C.J. Yang. (2023). Phenotypic expansion of KCNH1-associated disorders to include isolated epilepsy and its associations with genotypes and molecular sub-regional locations. CNS Neurosci Ther 29: 270-281. 36285361
Tian, Y., S.H. Heinemann, and T. Hoshi. (2019). Large-conductance Ca- and voltage-gated K channels form and break interactions with membrane lipids during each gating cycle. Proc. Natl. Acad. Sci. USA 116: 8591-8596. 30967508
Tikhonov, D.B. and B.S. Zhorov. (2017). Conservation and Variability of the Pore-Lining Helices in P-Loop Channels. Channels (Austin) 0. [Epub: Ahead of Print] 29095093
Tipparaju, S.M., X.P. Li, P.J. Kilfoil, B. Xue, V.N. Uversky, A. Bhatnagar, and O.A. Barski. (2012). Interactions between the C-terminus of Kv1.5 and Kvβ regulate pyridine nucleotide-dependent changes in channel gating. Pflugers Arch 463: 799-818. 22426702
Tippens, A.L. and A. Lee. (2007). Caldendrin, a neuron-specific modulator of Cav1.2 (L-type) Ca2+ channels. J. Biol. Chem. 282: 8464-8473. 17224447
Tombola, F., M.M. Pathak, and E.Y. Isacoff. (2005). Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron. 45: 379-388. 15694325
Tombola, F., M.M. Pathak, P. Gorostiza, and E.Y. Isacoff. (2007). The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature 445: 546-549. 17187057
Tomczak, A.P., J. Fernández-Trillo, S. Bharill, F. Papp, G. Panyi, W. Stühmer, E.Y. Isacoff, and L.A. Pardo. (2017). A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore. J Gen Physiol. [Epub: Ahead of Print] 28360219
Tonggu, L. and L. Wang. (2022). Structure of the Human BK Ion Channel in Lipid Environment. Membranes (Basel) 12:. 36005673
Toro L., Li M., Zhang Z., Singh H., Wu Y. and Stefani E. (2014). MaxiK channel and cell signalling. Pflugers Arch. 466(5):875-86. 24077696
Triano, I., F.N. Barrera, M.L. Renart, M.L. Molina, G. Fernández-Ballester, J.A. Poveda, A.M. Fernández, J.A. Encinar, A.V. Ferrer-Montiel, D. Otzen, and J.M. González-Ros. (2010). Occupancy of nonannular lipid binding sites on KcsA greatly increases the stability of the tetrameric protein. Biochemistry 49: 5397-5404. 20481584
Tronin, A.Y., L.J. Maciunas, K.C. Grasty, P.J. Loll, H.A. Ambaye, A.A. Parizzi, V. Lauter, A.D. Geragotelis, J.A. Freites, D.J. Tobias, and J.K. Blasie. (2019). Voltage-Dependent Profile Structures of a Kv-Channel via Time-Resolved Neutron Interferometry. Biophys. J. [Epub: Ahead of Print] 31378315
Tsai, C.J., K. Tani, K. Irie, Y. Hiroaki, T. Shimomura, D.G. McMillan, G.M. Cook, G.F. Schertler, Y. Fujiyoshi, and X.D. Li. (2013). Two alternative conformations of a voltage-gated sodium channel. J. Mol. Biol. 425: 4074-4088. 23831224
Tsai, S.Y., C.C. Huang, P.H. Chen, A. Tripathi, Y.R. Wang, Y.L. Wang, and J.C. Chen. (2021). Rapid Drug-Screening Platform Using Field-Effect Transistor-Based Biosensors: A Study of Extracellular Drug Effects on Transmembrane Potentials. Anal Chem. [Epub: Ahead of Print] 34919373
Tsai, W.H., C. Grauffel, M.Y. Huang, S. Postić, M.S. Rupnik, C. Lim, and S.B. Yang. (2022). Allosteric coupling between transmembrane segment 4 and the selectivity filter of TALK1 potassium channels regulates their gating by extracellular pH. J. Biol. Chem. 101998. [Epub: Ahead of Print] 35500647
Tsorin, I.B., I.Y. Teplov, V.P. Zinchenko, M.B. Vititnova, E.M. Tsyrlina, M.S. Yunusov, and S.A. Kryzhanovskii. (2022). Analysis of Electrophysiological Mechanisms of N-Deacetyllapaconitine Monochlorhydrate, the Main Metabolite of Lappaconitine Hydrobromide. Bull Exp Biol Med 173: 219-223. 35739330
Tu, L. and C. Deutsch. (2017). Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. J. Mol. Biol. [Epub: Ahead of Print] 28478285
Tuluc, P., B. Benedetti, P. Coste de Bagneaux, M. Grabner, and B.E. Flucher. (2016). Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels. J Gen Physiol 147: 437-449. 27185857
Turner, R.W., H. Asmara, J.D. Engbers, J. Miclat, A.P. Rizwan, G. Sahu, and G.W. Zamponi. (2016). Assessing the role of IKCa channels in generating the sAHP of CA1 hippocampal pyramidal cells. Channels (Austin) 0. [Epub: Ahead of Print] 26950800
Twiner, M.J., G.J. Doucette, A. Rasky, X.P. Huang, B.L. Roth, and M.C. Sanguinetti. (2012). Marine algal toxin azaspiracid is an open-state blocker of HERG potassium channels. Chem Res Toxicol 25: 1975-1984. 22856456
Uehara, A., Y. Nakamura, T. Shioya, S. Hirose, M. Yasukochi, and K. Uehara. (2008). Altered KCNQ3 Potassium Channel Function Caused by the W309R Pore-Helix Mutation Found in Human Epilepsy. J. Membr Biol. 222: 55-63. 18425618
Ulmschneider, M.B., C. Bagnéris, E.C. McCusker, P.G. Decaen, M. Delling, D.E. Clapham, J.P. Ulmschneider, and B.A. Wallace. (2013). Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 110: 6364-6369. 23542377
Ungar, D., A. Barth, W. Haase, A. Kaunzinger, E. Lewitzki, T. Ruiz, H. Reiländer, and H. Michel. (2001). Analysis of a putative voltage-gated prokaryotic potassium channel. Eur. J. Biochem. 268: 5386-5396. 11606201
Vaidya, B., D.S. Padhy, H.C. Joshi, S.S. Sharma, and J.N. Singh. (2024). Ion Channels and Metal Ions in Parkinson''s Disease: Historical Perspective to the Current Scenario. Methods Mol Biol 2761: 529-557. 38427260
Valente, P., A. Marte, F. Franchi, B. Sterlini, S. Casagrande, A. Corradi, P. Baldelli, and F. Benfenati. (2022). A Push-Pull Mechanism Between PRRT2 and β4-subunit Differentially Regulates Membrane Exposure and Biophysical Properties of NaV1.2 Sodium Channels. Mol Neurobiol. [Epub: Ahead of Print] 36441479
Vega-Saenz de Miera, E.C. (2004). Modification of Kv2.1 K+ currents by the silent Kv10 subunits. Brain Res Mol Brain Res 123: 91-103. 15046870
Vemana, S., S. Pandey, and H.P. Larsson. (2004). S4 movement in a mammalian HCN channel. J Gen Physiol 123: 21-32. 14676284
Verma, R., C. Malik, S. Azmi, S. Srivastava, S. Ghosh, and J.K. Ghosh. (2011). A synthetic S6 segment derived from KvAP channel self-assembles, permeabilizes lipid vesicles, and exhibits ion channel activity in bilayer lipid membrane. J. Biol. Chem. 286: 24828-24841. 21592970
Vicente, R., A. Escalada, N. Villalonga, L. Texido, M. Roura-Ferrer, M. Martin-Satue, C. Lopez-Iglesias, C. Soler, C. Solsona, M.M. Tamkun, and A. Felipe. (2006). Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J. Biol. Chem. 281: 37675-37685. 17038323
Vicente-Carrillo, A., M. Álvarez-Rodríguez, and H. Rodríguez-Martínez. (2017). The CatSper channel modulates boar sperm motility during capacitation. Reprod Biol. [Epub: Ahead of Print] 28077244
Vijayaragavan, K., M. Boutjdir, and M. Chahine. (2004). Modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C. J Neurophysiol 91: 1556-1569. 14657190
Vinekar, R.S. and R. Sowdhamini. (2016). Three-dimensional modelling of the voltage-gated sodium ion channel from Anopheles gambiae reveals spatial clustering of evolutionarily conserved acidic residues at the extracellular sites. Curr Neuropharmacol. [Epub: Ahead of Print] 27919210
Vitale, R.M., F.A. Iannotti, and T. Florio. (2023). Editorial: "Small molecules targeting transmembrane receptors and ion channels in drug discovery". Front Mol Biosci 10: 1183713. 37200869
Wagnon, J.L., B.S. Barker, M. Ottolini, Y. Park, A. Volkheimer, P. Valdez, M.E.M. Swinkels, M.K. Patel, and M.H. Meisler. (2017). Loss-of-function variants of in intellectual disability without seizures. Neurol Genet 3: e170. 28702509
Wan, J., M. Chen, Z. Wang, T.H. Everett, 4th, M. Rubart-von der Lohe, C. Shen, Z. Qu, J.N. Weiss, P.A. Boyden, and P.S. Chen. (2019). Small-conductance calcium-activated potassium current modulates the ventricular escape rhythm in normal rabbit hearts. Heart Rhythm 16: 615-623. 30445170
Wang, A.W., R. Yang, and H.T. Kurata. (2016). Sequence determinants of subtype-specific actions of KCNQ channel openers. J. Physiol. [Epub: Ahead of Print] 27506413
Wang, C., Y.F. Chen, X.Q. Quan, H. Wang, R. Zhang, J.H. Xiao, J.L. Wang, C.T. Zhang, J.Z. Xiang, and Q. Tang. (2015). Effects of neferine on Kv4.3 channels expressed in HEK293 cells and ex vivo electrophysiology of rabbit hearts. Acta Pharmacol Sin 36: 1451-1461. 26592512
Wang, G. and M. Covarrubias. (2006). Voltage-dependent gating rearrangements in the intracellular T1-T1 interface of a K+ channel. J Gen Physiol 127: 391-400. 16533897
Wang, G.K., C. Russell, and S.Y. Wang. (2004). State-dependent block of voltage-gated Na+ channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain. Pain 110: 166-174. 15275764
Wang, H., Y. Yan, Q. Liu, Y. Huang, Y. Shen, L. Chen, Y. Chen, Q. Yang, Q. Hao, K. Wang, and J. Chai. (2007). Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits. Nat Neurosci 10: 32-39. 17187064
Wang, J., Y. Liu, Y. Wu, K. Yang, K. Yang, L. Yan, and L. Feng. (2023). Anti-inflammatory effects of icariin in the acute and chronic phases of the mouse pilocarpine model of epilepsy. Eur J Pharmacol 176141. [Epub: Ahead of Print] 37866741
Wang, L., X. Meng, Z. Yuchi, Z. Zhao, D. Xu, D. Fedida, Z. Wang, and C. Huang. (2015). De Novo Mutation in the SCN5A Gene Associated with Brugada Syndrome. Cell Physiol Biochem 36: 2250-2262. 26279430
Wang, Q., S. Li, F. Li, X. Tian, and Z. Li. (2023). Identification of Potassium Channel Family Members in L. and Characterization of. Life (Basel) 13:. 37511836
Wang, Q., T. Xu, F. Fang, Q. Wang, P. Lundquist, and L. Sun. (2023). Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Top-Down Proteomics of Mouse Brain Integral Membrane Proteins. Anal Chem 95: 12590-12594. 37595263
Wang, T., S. Young, H. Krenz, F. Tüttelmann, A. Röpke, C. Krallmann, S. Kliesch, X.H. Zeng, C. Brenker, and T. Strünker. (2020). The Ca2+ channel CatSper is not activated by cAMP/PKA signaling but directly affected by chemicals used to probe the action of cAMP and PKA. J. Biol. Chem. [Epub: Ahead of Print] 32703901
Wang, W., J. Huang, Y. Hu, J. Feng, D. Gao, W. Fang, M. Xu, C. Ma, Z. Fu, Q. Chen, X. Liang, and J. Lu. (2024). Seascapes Shaped the Local Adaptation and Population Structure of South China Coast Yellowfin Seabream (Acanthopagrus latus). Mar Biotechnol (NY) 26: 60-73. 38147145
Wang, X., X. Zhang, X.P. Dong, M. Samie, X. Li, X. Cheng, A. Goschka, D. Shen, Y. Zhou, J. Harlow, M.X. Zhu, D.E. Clapham, D. Ren, and H. Xu. (2012). TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes. Cell 151: 372-383. 23063126
Wang, Y. and F. Sesti. (2007). Molecular mechanisms underlying KVS-1-MPS-1 complex assembly. Biophys. J. 93: 3083-3091. 17604313
Wang, Y., S. Tang, K.E. Harvey, A.E. Salyer, T.A. Li, E.K. Rantz, M.A. Lill, and G.H. Hockerman. (2018). Molecular determinants of the differential modulation of Cav1.2 and Cav1.3 by nifedipine and FPL 64176. Mol Pharmacol. [Epub: Ahead of Print] 29980657
Wang, Z.J., I. Blanco, S. Hayoz, and T.I. Brelidze. (2020). The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms. J. Biol. Chem. [Epub: Ahead of Print] 32341127
Welch, M.A., L.A. Forster, S.I. Atlas, and D.J. Baro. (2019). SUMOylating Two Distinct Sites on the A-type Potassium Channel, Kv4.2, Increases Surface Expression and Decreases Current Amplitude. Front Mol Neurosci 12: 144. 31213982
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Whicher, J.R. and R. MacKinnon. (2016). Structure of the voltage-gated K⁺ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353: 664-669. 27516594
Whicher, J.R. and R. MacKinnon. (2019). Regulation of Eag1 gating by its intracellular domains. Elife 8:. 31490124
Williams, B.S., J.P. Felix, B.T. Priest, R.M. Brochu, K. Dai, S.B. Hoyt, C. London, Y.S. Tang, J.L. Duffy, W.H. Parsons, G.J. Kaczorowski, and M.L. Garcia. (2007). Characterization of a new class of potent inhibitors of the voltage-gated sodium channel Nav1.7. Biochemistry. 46: 14693-14703. 18027973
Williams, S.E., S.P. Brazier, N. Baban, V. Telezhkin, C.T. Müller, D. Riccardi, and P.J. Kemp. (2008). A structural motif in the C-terminal tail of slo1 confers carbon monoxide sensitivity to human BK(Ca) channels. Pflugers Arch 456(3): 561-572. 18180950
Winterstein, L.M., K. Kukovetz, U.P. Hansen, I. Schroeder, J.L. Van Etten, A. Moroni, G. Thiel, and O. Rauh. (2021). Distinct lipid bilayer compositions have general and protein-specific effects on K+ channel function. J Gen Physiol 153:. 33439243
Wiriyasermkul, P., S. Moriyama, and S. Nagamori. (2020). Membrane transport proteins in melanosomes: Regulation of ions for pigmentation. Biochim. Biophys. Acta. Biomembr 1862: 183318. 32333855
Wisedchaisri, G., L. Tonggu, E. McCord, T.M. Gamal El-Din, L. Wang, N. Zheng, and W.A. Catterall. (2019). Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell. [Epub: Ahead of Print] 31353218
Wisedchaisri, G., T.M. Gamal El-Din, N. Zheng, and W.A. Catterall. (2023). Structural basis for severe pain caused by mutations in the S4-S5 linkers of voltage-gated sodium channel Na1.7. Proc. Natl. Acad. Sci. USA 120: e2219624120. 36996107
Wittekindt, O.H., T. Dreker, D.J. Morris-Rosendahl, F. Lehmann-Horn, and S. Grissmer. (2004). A novel non-neuronal hSK3 isoform with a dominant-negative effect on hSK3 currents. Cell Physiol Biochem 14: 23-30. 14976403
Wojtovich, A.P., T.A. Sherman, S.M. Nadtochiy, W.R. Urciuoli, P.S. Brookes, and K. Nehrke. (2011). SLO-2 is cytoprotective and contributes to mitochondrial potassium transport. PLoS One 6: e28287. 22145034
Wojtyniak, M., A.G. Brear, D.M. O'Halloran, and P. Sengupta. (2013). Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans. J Cell Sci 126: 4381-4395. 23886944
Wolters, M., M. Madeja, A.M. Farrell, and O. Pongs. (1999). Bacillus stearothermophilus lctB gene gives rise to functional K+ channels in Escherichia coli and in Xenopus oocytes. Receptors Channels 6: 477-491. 10635064
Woo, D.H., K.S. Han, J.W. Shim, B.E. Yoon, E. Kim, J.Y. Bae, S.J. Oh, E.M. Hwang, A.D. Marmorstein, Y.C. Bae, J.Y. Park, and C.J. Lee. (2012). TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151: 25-40. 23021213
Wright, P.D., E.L. Veale, D. McCoull, D.C. Tickle, J.M. Large, E. Ococks, G. Gothard, C. Kettleborough, A. Mathie, and J. Jerman. (2017). Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochem. Biophys. Res. Commun. 493: 444-450. 28882594
Wright, P.D., G. Weir, J. Cartland, D. Tickle, C. Kettleborough, M.Z. Cader, and J. Jerman. (2013). Cloxyquin (5-chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK. Biochem. Biophys. Res. Commun. 441: 463-468. 24383077
Wu, F., M. Quinonez, and S.C. Cannon. (2021). Gating pore currents occur in CaV1.1 domain III mutants associated with HypoPP. J Gen Physiol 153:. 34463712
Wu, L., S.L. Yong, C. Fan, Y. Ni, S. Yoo, T. Zhang, X. Zhang, C.A. Obejero-Paz, H.J. Rho, T. Ke, P. Szafranski, S.W. Jones, Q. Chen, and Q.K. Wang. (2008). Identification of a new co-factor, MOG1, required for the full function of cardiac sodium channel Nav 1.5. J. Biol. Chem. 283(11): 6968-6978. 18184654
Wu, R.S., G. Liu, S.I. Zakharov, N. Chudasama, H. Motoike, A. Karlin, and S.O. Marx. (2013). Positions of β2 and β3 subunits in the large-conductance calcium- and voltage-activated BK potassium channel. J Gen Physiol 141: 105-117. 23277477
Wu, X., R. Ramentol, M.E. Perez, S.Y. Noskov, and H.P. Larsson. (2021). A second S4 movement opens hyperpolarization-activated HCN channels. Proc. Natl. Acad. Sci. USA 118:. 34504015
Wu, Y., Y. Yang, S. Ye, and Y. Jiang. (2010). Structure of the gating ring from the human large-conductance Ca2+-gated K+ channel. Nature 466: 393-397. 20574420
Wunderlich, J. (2022). Updated List of Transport Proteins in. Front Cell Infect Microbiol 12: 926541. 35811673
Xia, J., N. Yamaji, T. Kasai, and J.F. Ma. (2010). Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. USA 107: 18381-18385. 20937890
Xia, X.-M., X. Zeng, and C.J. Lingle. (2002). Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418: 880-884. 12192411
Xia, X.M., X. Zhang, and C.J. Lingle. (2004). Ligand-dependent activation of Slo family channels is defined by interchangeable cytosolic domains. J. Neurosci. 24: 5585-5591. 15201331
Xia, Z., X. Huang, K. Chen, H. Wang, J. Xiao, K. He, R. Huang, X. Duan, H. Liu, J. Zhang, and G. Xiang. (2016). Proapoptotic Role of Potassium Ions in Liver Cells. Biomed Res Int 2016: 1729135. 27069917
Xiao, K., Z. Sun, X. Jin, W. Ma, Y. Song, S. Lai, Q. Chen, M. Fan, J. Zhang, W. Yue, and Z. Huang. (2018). ERG3 potassium channel-mediated suppression of neuronal intrinsic excitability and prevention of seizure generation in mice. J. Physiol. 596: 4729-4752. 30016551
Xicluna, J., B. Lacombe, I. Dreyer, C. Alcon, L. Jeanguenin, H. Sentenac, J.B. Thibaud, and I. Cherel. (2007). Increased functional diversity of plant K+ channels by preferential heteromerization of the shaker-like subunits AKT2 and KAT2. J. Biol. Chem. 282: 486-494. 17085433
Xie, L., S. Dolai, Y. Kang, T. Liang, H. Xie, T. Qin, L. Yang, L. Chen, and H.Y. Gaisano. (2016). Syntaxin-3 Binds and Regulates Both R- and L-Type Calcium Channels in Insulin-Secreting INS-1 832/13 Cells. PLoS One 11: e0147862. 26848587
Xie, S., C. Xu, C. Wu, Y. Lou, J. Duan, R. Sang, Z. Lou, J. Hou, W. Ge, Y. Xi, and X. Yang. (2023). Co-dependent regulation of p-BRAF and potassium channel KCNMA1 levels drives glioma progression. Cell Mol Life Sci 80: 61. 36763212
Xiong, H., X. Bai, Z. Quan, D. Yu, H. Zhang, C. Zhang, L. Liang, Y. Yao, Q. Yang, Z. Wang, L. Wang, Y. Huang, H. Li, X. Ren, X. Tu, T. Ke, C. Xu, and Q.K. Wang. (2021). Mechanistic insights into the interaction of cardiac sodium channel Na1.5 with MOG1 and a new molecular mechanism for Brugada syndrome. Heart Rhythm. [Epub: Ahead of Print] 34843967
Xiong, P., G. Yao, H. Zhang, and M. He. (2022). Molecular cloning and functional characterization of KCNQ1 in shell biomineralisation of pearl oyster Pinctada fucata martensii. Gene 821: 146285. 35176427
Xiong, W., H. Fan, Q. Zeng, Z. Deng, G. Li, W. Lu, B. Zhang, S. Lai, X. Chen, and X. Xu. (2023). The anticancer effects of FS48 from salivary glands of on NCI-H460 cells its blockage of voltage-gated K channels. Acta Pharm 73: 145-155. 36692462
Xu H., Abuhatzira L., Carmona GN., Vadrevu S., Satin LS. and Notkins AL. (2015). The Ia-2beta intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice. Diabetologia. 58(10):2298-306. 26141787
Xu Y., Ramu Y., Shin HG., Yamakaze J. and Lu Z. (2013). Energetic role of the paddle motif in voltage gating of Shaker K(+) channels. Nat Struct Mol Biol. 20(5):574-81. 23542156
Xu, D., D. Su, S. Nusinowitz, and D. Sarraf. (2017). CENTRAL ELLIPSOID LOSS ASSOCIATED WITH CONE DYSTROPHY AND KCNV2 MUTATION. Retin Cases Brief Rep. [Epub: Ahead of Print] 29210963
Xu, F., X. Wu, L.H. Jiang, H. Zhao, and J. Pan. (2016). An organelle K+ channel is required for osmoregulation in Chlamydomonas reinhardtii. J Cell Sci. [Epub: Ahead of Print] 27311484
Xu, L., X. Ding, T. Wang, S. Mou, H. Sun, and T. Hou. (2019). Voltage-gated sodium channels: structures, functions, and molecular modeling. Drug Discov Today 24: 1389-1397. 31129313
Xu, P., K. Shimomura, C. Lee, X. Gao, E.H. Simpson, G. Huang, C.M. Joseph, V. Kumar, W.P. Ge, K.S. Pawlowski, M.D. Frye, S. Kourrich, E.R. Kandel, and J.S. Takahashi. (2022). A missense mutation in causes hippocampal learning deficits in mice. Proc. Natl. Acad. Sci. USA 119: e2204901119. 35881790
Xu, P., X. Mo, R. Xia, L. Jiang, C. Zhang, H. Xu, Q. Sun, G. Zhou, Y. Zhang, Y. Wang, and H. Xia. (2021). KCNN4 promotes the progression of lung adenocarcinoma by activating the AKT and ERK signaling pathways. Cancer Biomark. [Epub: Ahead of Print] 33896824
Xu, T., L. Nie, Y. Zhang, J. Mo, W. Feng, D. Wei, E. Petrov, L.E. Calisto, B. Kachar, K.W. Beisel, A.E. Vazquez, and E.N. Yamoah. (2007). Roles of alternative splicing in the functional properties of inner ear-specific KCNQ4 channels. J. Biol. Chem. 282: 23899-23909. 17561493
Xu, Y.Y., W.P. Wan, S. Zhao, and Z.G. Ma. (2020). L-type Calcium Channels are Involved in Iron-induced Neurotoxicity in Primary Cultured Ventral Mesencephalon Neuron.s of Rats. Neurosci Bull 36: 165-173. 31482520
Yagi, N., H. Itoh, T. Hisamatsu, Y. Tomita, H. Kimura, Y. Fujii, T. Makiyama, M. Horie, and S. Ohno. (2018). A challenge for mutation specific risk stratification in long QT syndrome type 1. J Cardiol 72: 56-65. 29439887
Yamagata, K., T. Senokuchi, M. Lu, M. Takemoto, M. Fazlul Karim, C. Go, Y. Sato, M. Hatta, T. Yoshizawa, E. Araki, J. Miyazaki, and W.J. Song. (2011). Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 β-cell line. Biochem. Biophys. Res. Commun. 407: 620-625. 21426901
Yan, Z., Q. Zhou, L. Wang, J. Wu, Y. Zhao, G. Huang, W. Peng, H. Shen, J. Lei, and N. Yan. (2017). Structure of the Nav1.4-β1 Complex from Electric Eel. Cell 170: 470-482.e11. 28735751
Yang, H., L. Hu, J. Shi, K. Delaloye, F.T. Horrigan, and J. Cui. (2007). Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels. Proc. Natl. Acad. Sci. U.S.A. 104: 18270-18275. 17984060
Yang, J., G. Krishnamoorthy, A. Saxena, G. Zhang, J. Shi, H. Yang, K. Delaloye, D. Sept, and J. Cui. (2010). An epilepsy/dyskinesia-associated mutation enhances BK channel activation by potentiating Ca2+ sensing. Neuron. 66: 871-883. 20620873
Yang, J.K., J. Lu, S.S. Yuan, Asan, X. Cao, H.Y. Qiu, T.T. Shi, F.Y. Yang, Q. Li, C.P. Liu, Q. Wu, Y.H. Wang, H.X. Huang, A. Kayoumu, J.P. Feng, R.R. Xie, X.R. Zhu, C. Liu, G.R. Yang, M.R. Zhang, C.L. Xie, C. Chen, B. Zhang, G. Liu, X.Q. Zhang, and A. Xu. (2018). From Hyper- to Hypoinsulinemia and Diabetes: Effect of KCNH6 on Insulin Secretion. Cell Rep 25: 3800-3810.e6. 30590050
Yang, L., A. Katchman, J.P. Morrow, D. Doshi, and S.O. Marx. (2011). Cardiac L-type calcium channel (Cav1.2) associates with gamma subunits. FASEB J. 25: 928-936. 21127204
Yazdani, M., G. Zhang, Z. Jia, J. Shi, J. Cui, and J. Chen. (2020). Aromatic interactions with membrane modulate human BK channel activation. Elife 9:. 32597752
Yazdani, M., Z. Jia, and J. Chen. (2020). Hydrophobic dewetting in gating and regulation of transmembrane protein ion channels. J Chem Phys 153: 110901. 32962356
Ye, B. and J.M. Nerbonne. (2009). Proteolytic processing of HCN2 and co-assembly with HCN4 in the generation of cardiac pacemaker channels. J. Biol. Chem. 284: 25553-25559. 19574228
Yellen, G. (2002). The voltage-gated potassium channels and their relatives. Nature 419: 35-42. 12214225
Yellen, G. (1998). The moving parts of voltage-gated ion channels. Quat. Rev. Biophys. 31: 239-295. 10384687
Yildirim-Kahriman, S. (2023). Effect of Voltage-Gated Sodium Channel Inhibitors on the Metastatic Behavior of Prostate Cancer Cells: A Meta-Analysis. Pak J Biol Sci 26: 419-426. 37937335
Yu, R., X.F. Fan, C. Chen, and Z.H. Liu. (2017). Whole‑exome sequencing identifies a novel mutation (R367G) in SCN5A to be associated with familial cardiac conduction disease. Mol Med Rep 16: 410-414. 28534967
Yuan, A., C.M. Santi, A. Wei, Z.W. Wang, K. Pollak, M. Nonet, L. Kaczmarek, C.M. Crowder, and L. Salkoff. (2003). The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron. 37: 765-773. 12628167
Yuan, A., M. Dourado, A. Butler, N. Walton, A. Wei, and L. Salkoff. (2000). SLO-2, a K+ channel with an unusual Cl- dependence. Nat Neurosci 3: 771-779. 10903569
Yuan, F.F., X. Gu, X. Huang, Y.W. Hou, Y. Zhong, J. Lin, and J. Wu. (2017). Attention-deficit/hyperactivity disorder associated with KChIP1 rs1541665 in Kv channels accessory proteins. PLoS One 12: e0188678. 29176790
Yuan, H., H. Yuan, Q. Wang, W. Ye, R. Yao, W. Xu, and Y. Liu. (2020). Two novel KCNA1 variants identified in two unrelated Chinese families affected by episodic ataxia type 1 and neurodevelopmental disorders. Mol Genet Genomic Med e1434. [Epub: Ahead of Print] 32705822
Yuan, P., M.D. Leonetti, Y. Hsiung, and R. MacKinnon. (2012). Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481: 94-97. 22139424
Yuchi, Z., V.P. Pau, and D.S. Yang. (2008). GCN4 enhances the stability of the pore domain of potassium channel KcsA. FEBS J. 275: 6228-6236. 19016844
Yusifov, T., N. Savalli, C.S. Gandhi, M. Ottolia, and R. Olcese. (2008). The RCK2 domain of the human BKCa channel is a calcium sensor. Proc. Natl. Acad. Sci. U.S.A. 105: 376-381. 18162557
Zaman, T., K.L. Helbig, J. Clatot, C.H. Thompson, S.K. Kang, K. Stouffs, A.E. Jansen, L. Verstraete, A. Jacquinet, E. Parrini, R. Guerrini, Y. Fujiwara, S. Miyatake, B. Ben-Zeev, H. Bassan, O. Reish, D. Marom, N. Hauser, T.A. Vu, S. Ackermann, C.E. Spencer, N. Lippa, S. Srinivasan, A. Charzewska, D. Hoffman-Zacharska, D. Fitzpatrick, V. Harrison, P. Vasudevan, S. Joss, D.T. Pilz, K.A. Fawcett, I. Helbig, N. Matsumoto, J.A. Kearney, A.E. Fry, and E.M. Goldberg. (2020). SCN3A-related neurodevelopmental disorder: A spectrum of epilepsy and brain malformation. Ann Neurol. [Epub: Ahead of Print] 32515017
Zaydman MA., Silva JR., Delaloye K., Li Y., Liang H., Larsson HP., Shi J. and Cui J. (2013). Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc Natl Acad Sci U S A. 110(32):13180-5. 23861489
Zaytseva, A.K., A.M. Kiselev, A.S. Boitsov, Y.V. Fomicheva, G.S. Pavlov, B.S. Zhorov, and A.A. Kostareva. (2022). Characterization of the novel heterozygous genetic variant Y739D associated with Brugada syndrome. Biochem Biophys Rep 30: 101249. 35300108
Zelman, A.K., A. Dawe, C. Gehring, and G.A. Berkowitz. (2012). Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci 3: 95. 22661976
Zeng, Q., Y. Yang, J. Duan, X. Niu, Y. Chen, D. Wang, J. Zhang, J. Chen, X. Yang, J. Li, Z. Yang, Y. Jiang, J. Liao, and Y. Zhang. (2022). -Related Epilepsy: The Phenotypic Spectrum, Treatment and Prognosis. Front Mol Neurosci 15: 809951. 35431799
Zhan, H., R. Stanciauskas, C. Stigloher, K.K. Dizon, M. Jospin, J.L. Bessereau, and F. Pinaud. (2014). In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans. Nat Commun 5: 4974. 25232639
Zhang, D., L. Sun, S. Li, W. Wang, Y. Ding, S.A. Swarm, L. Li, X. Wang, X. Tang, Z. Zhang, Z. Tian, P.J. Brown, C. Cai, R.L. Nelson, and J. Ma. (2018). Elevation of soybean seed oil content through selection for seed coat shininess. Nat Plants. [Epub: Ahead of Print] 29292374
Zhang, F., Y. Liu, F. Tang, B. Liang, H. Chen, H. Zhang, and K. Wang. (2019). Electrophysiological and pharmacological characterization of a novel and potent neuronal Kv7 channel opener SCR2682 for antiepilepsy. FASEB J. fj201802848RR. [Epub: Ahead of Print] 31063701
Zhang, G., S.Y. Huang, J. Yang, J. Shi, X. Yang, A. Moller, X. Zou, and J. Cui. (2010). Ion sensing in the RCK1 domain of BK channels. Proc. Natl. Acad. Sci. USA 107: 18700-18705. 20937866
Zhang, J., D. Luo, F. Li, Z. Li, X. Gao, J. Qiao, L. Wu, and M. Li. (2021). Ginsenoside Rg3 Alleviates Antithyroid Cancer Drug Vandetanib-Induced QT Interval Prolongation. Oxid Med Cell Longev 2021: 3520034. 34659631
Zhang, J., J. Chen, Y. Lu, Y. Yang, W. Chen, B. Shen, J. Hu, P. Jia, S. Xu, Y. Shi, Y. Ning, J. Wang, Y. Fang, S. Zhao, Y. Li, Y. Dai, X. Zhang, M. Xiang, Y. Tian, Z. Liu, N. Song, and X. Ding. (2022). TWIK-related acid-sensitive K channel 2 promotes renal fibrosis by inducing cell-cycle arrest. iScience 25: 105620. 36465115
Zhang, J., X. Qu, M. Covarrubias, and M.W. Germann. (2013). Insight into the modulation of Shaw2 Kv channels by general anesthetics: structural and functional studies of S4-S5 linker and S6 C-terminal peptides in micelles by NMR. Biochim. Biophys. Acta. 1828: 595-601. 23031574
Zhang, L., Y. Wen, Q. Zhang, Y. Chen, J. Wang, K. Shi, L. Du, and X. Bao. (2020). Gene Variants in Eight Chinese Patients With a Wide Range of Phenotypes. Front Pediatr 8: 577544. 33425808
Zhang, W., L. Wang, L. Zhang, X. Kong, J. Zhang, X. Wang, Y. Pei, and Z. Jin. (2023). HS-mediated balance regulation of stomatal and non-stomatal factors responding to drought stress in Chinese cabbage. Hortic Res 10: uhac284. 36938567
Zhang, X., F. Bertaso, J.W. Yoo, K. Baumgärtel, S.M. Clancy, V. Lee, C. Cienfuegos, C. Wilmot, J. Avis, T. Hunyh, C. Daguia, C. Schmedt, J. Noebels, and T. Jegla. (2010). Deletion of the potassium channel Kv12.2 causes hippocampal hyperexcitability and epilepsy. Nat Neurosci 13: 1056-1058. 20676103
Zhang, X., S. Qiu, L. Yang, Y. Li, N. Xu, and X. Yu. (2024). [Clinical features and genetic analysis of five children with epilepsies due to variants of SCN8A gene]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 41: 174-180. 38311555
Zhang, Y., Y. Zhao, H. Liu, W. Yu, F. Yang, W. Li, Z. Cao, and Y. Wu. (2018). Mouse β-Defensin 3, A Defensin Inhibitor of Both Its Endogenous and Exogenous Potassium Channels. Molecules 23:. 29925780
Zhang, Y., Z. Wang, L. Zhang, Y. Cao, D. Huang, and K. Tang. (2006). Molecular cloning and stress-dependent regulation of potassium channel gene in Chinese cabbage (Brassica rapa ssp. Pekinensis). J Plant Physiol. 163: 968-978. 16949960
Zhang, Z., H.A. Ledford, S. Park, W. Wang, S. Rafizadeh, H.J. Kim, W. Xu, L. Lu, V.C. Lau, A.A. Knowlton, X.D. Zhang, E.N. Yamoah, and N. Chiamvimonvat. (2016). Distinct subcellular mechanisms for the enhancement of the surface membrane expression of SK2 channel by its interacting proteins, α-actinin2 and filamin A. J. Physiol. [Epub: Ahead of Print] 27779751
Zhao, C., Y. Tang, J. Wang, Y. Zeng, H. Sun, Z. Zheng, R. Su, K. Schneeberger, J.E. Parker, and H. Cui. (2021). A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytol. [Epub: Ahead of Print] 33469907
Zhao, F., J.L. Wang, H.Y. Ming, Y.N. Zhang, Y.Q. Dun, J.H. Zhang, and Y.B. Song. (2019). Insights into the binding mode and functional components of the analgesic-antitumour peptide from Karsch to human voltage-gated sodium channel 1.7 based on dynamic simulation analysis. J Biomol Struct Dyn 1-12. [Epub: Ahead of Print] 31099313
Zhao, G., Z.P. Neeb, M.D. Leo, J. Pachuau, A. Adebiyi, K. Ouyang, J. Chen, and J.H. Jaggar. (2010). Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells. J Gen Physiol 136: 283-291. 20713546
Zhao, J. and R. Blunck. (2016). The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel. Elife 5:. [Epub: Ahead of Print] 27710769
Zhao, W., L. Pan, A. Stalin, J. Xu, L. Wu, X. Ke, and Y. Chen. (2023). Inhibitory Effects of 2-Aminoethoxydiphenyl Borate (2-APB) on Three K1 Channel Currents. Molecules 28:. 36677928
Zhao, Y., T. Scheuer, and W.A. Catterall. (2004). Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. Proc. Natl. Acad. Sci. USA 101: 17873-17878. 15583130
Zheng, H., X. Yan, G. Li, H. Lin, S. Deng, W. Zhuang, F. Yao, Y. Lu, X. Xia, H. Yuan, L. Jin, and Z. Yan. (2022). Proactive functional classification of all possible missense single-nucleotide variants in. Genome Res. [Epub: Ahead of Print] 35760561
Zheng, Z., H. Chen, P. Xie, C.A. Dickerson, J.A.C. King, M.F. Alexeyev, H.S. Shin, and S. Wu. (2019). α1G T-type Calcium Channel Determines the Angiogenic Potential of Pulmonary Microvascular Endothelial Cells. Am. J. Physiol. Cell Physiol. [Epub: Ahead of Print] 30649917
Zhong, H., L.L. Molday, R.S. Molday, and K.-W. Yau. (2002). The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420: 193-198. 12432397
Zhong, T., X. Pan, J. Wang, B. Yang, and L. Ding. (2019). The regulatory roles of calcium channels in tumors. Biochem Pharmacol 169: 113603. [Epub: Ahead of Print] 31415738
Zhou, X., A. Li, X. Mi, Y. Li, Z. Ding, M. An, Y. Chen, W. Li, X. Tao, X. Chen, and Y. Li. (2023). Hyperexcited limbic neurons represent sexual satiety and reduce mating motivation. Science 379: 820-825. 36758107
Zhou, Y., S.M. Assmann, and T. Jegla. (2021). External Cd2+ and protons activate the hyperpolarization-gated K+ channel KAT1 at the voltage sensor. J Gen Physiol 153:. 33275659
Zhou, Y., Y. Hao, P. Sun, M. Chen, T. Zhang, and H. Wu. (2022). Relationship among surface electric double layer of cardiomyocyte membrane and toxicology of digoxin and opening of ion channels. Sci Rep 12: 20749. 36456624
Zhou, Y., Z. Li, C. Chi, C. Li, M. Yang, and B. Liu. (2023). Identification of Hub Genes and Potential Molecular Pathogenesis in Substantia Nigra in Parkinson''s Disease via Bioinformatics Analysis. Parkinsons Dis 2023: 6755569. 37089789
Zhu, L., K. Ploessl, and H.F. Kung. (2013). Chemistry. Expanding the scope of fluorine tags for PET imaging. Science 342: 429-430. 24159034
Zhuo, R.G., P. Peng, J.Q. Zheng, Y.L. Zhang, L. Wen, X.L. Wei, and X.Y. Ma. (2017). The glycine hinge of transmembrane segment 2 modulates the subcellular localization and gating properties in TREK channels. Biochem. Biophys. Res. Commun. 490: 1125-1131. 28676394
Zhuo, R.G., P. Peng, X.Y. Liu, H.T. Yan, J.P. Xu, J.Q. Zheng, X.L. Wei, and X.Y. Ma. (2016). Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Sci Rep 6: 21248. 26879043
Zimmermann, K., A. Leffler, A. Babes, C.M. Cendan, R.W. Carr, J. Kobayashi, C. Nau, J.N. Wood, and P.W. Reeh. (2007). Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature. 447: 855-888. 17568746
Zou, X., S.K. Shanmugam, S.A. Kanner, K.J. Sampson, R.S. Kass, and H.M. Colecraft. (2023). Divergent regulation of KCNQ1/E1 by targeted recruitment of protein kinase A to distinct sites on the channel complex. Elife 12:. 37650513