| |
---|---|
Accession Number: | O43526 |
Protein Name: | KCNQ2 |
Length: | 872 |
Molecular Weight: | 95848.00 |
Species: | Homo sapiens (Human) [9606] |
Number of TMSs: | 6 |
Location1 / Topology2 / Orientation3: | Membrane1 / Multi-pass membrane protein2 |
Substrate | potassium(1+) |
Cross database links:
RefSeq: | NP_004509.2 NP_742104.1 NP_742105.1 NP_742106.1 NP_742107.1 |
---|---|
Entrez Gene ID: | 3785 |
Pfam: | PF00520 PF03520 PF11956 |
OMIM: |
121200 phenotype 602235 gene |
KEGG: | hsa:3785 |
Gene Ontology
GO:0008076
C:voltage-gated potassium channel complex
GO:0005249
F:voltage-gated potassium channel activity
GO:0007399
P:nervous system development
GO:0006813
P:potassium ion transport
GO:0007268
P:synaptic transmission
GO:0055085
P:transmembrane transport
| |
References (27)[1] “Identification and cloning of neuroblastoma-specific and nerve tissue-specific genes through compiled expression profiles.” Yokoyama M.et.al. 9039501 [2] “A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns.” Singh N.A.et.al. 9425895 [3] “A potassium channel mutation in neonatal human epilepsy.” Biervert C.et.al. 9430594 [4] “KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel.” Wang H.-S.et.al. 9836639 [5] “The KCNQ2 potassium channel: splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3.” Tinel N.et.al. 9827540 [6] “Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy.” Yang W.-P.et.al. 9677360 [7] “Differential expression of KCNQ2 splice variants: implications to M current function during neuronal development.” Smith J.S.et.al. 11160379 [8] “The DNA sequence and comparative analysis of human chromosome 20.” Deloukas P.et.al. 11780052 [9] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).” The MGC Project Teamet.al. 15489334 [10] “Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy.” Schroeder B.C.et.al. 9872318 [11] “Two types of K(+) channel subunit, Erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell.” Selyanko A.A.et.al. 10479678 [12] “M-type KCNQ2-KCNQ3 potassium channels are modulated by the KCNE2 subunit.” Tinel N.et.al. 11034315 [13] “Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy.” Schwake M.et.al. 10788442 [14] “Reconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K(+) channels that underlie the neuronal M current.” Shapiro M.S.et.al. 10684873 [15] “Inhibition of KCNQ1-4 potassium channels expressed in mammalian cells via M1 muscarinic acetylcholine receptors.” Selyanko A.A.et.al. 10713961 [16] “Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine.” Main M.J.et.al. 10908292 [17] “Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels.” Wickenden A.D.et.al. 10953053 [18] “The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells tranfected with human KCNQ2/3 subunits.” Rundfeldt C.et.al. 10713399 [19] “Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy.” Cooper E.C.et.al. 10781098 [20] “An unappreciated role for RNA surveillance.” Hillman R.T.et.al. 14759258 [21] “Structural and mutational analysis of KCNQ2, the major gene locus for benign familial neonatal convulsions.” Biervert C.et.al. 10323247 [22] “Benign familial neonatal convulsions (BFNC) resulting from mutation of the KCNQ2 voltage sensor.” Miraglia del Giudice E.et.al. 11175290 [23] “Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel.” Dedek K.et.al. 11572947 [24] “KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum.” Singh N.A.et.al. 14534157 [25] “Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2.” Dedek K.et.al. 12742592 | |
Structure: | |
[...more] |
External Searches:
|
Analyze:
Predict TMSs (Predict number of transmembrane segments) | ||||
FASTA formatted sequence |
|
1: MVQKSRNGGV YPGPSGEKKL KVGFVGLDPG APDSTRDGAL LIAGSEAPKR GSILSKPRAG 61: GAGAGKPPKR NAFYRKLQNF LYNVLERPRG WAFIYHAYVF LLVFSCLVLS VFSTIKEYEK 121: SSEGALYILE IVTIVVFGVE YFVRIWAAGC CCRYRGWRGR LKFARKPFCV IDIMVLIASI 181: AVLAAGSQGN VFATSALRSL RFLQILRMIR MDRRGGTWKL LGSVVYAHSK ELVTAWYIGF 241: LCLILASFLV YLAEKGENDH FDTYADALWW GLITLTTIGY GDKYPQTWNG RLLAATFTLI 301: GVSFFALPAG ILGSGFALKV QEQHRQKHFE KRRNPAAGLI QSAWRFYATN LSRTDLHSTW 361: QYYERTVTVP MYSSQTQTYG ASRLIPPLNQ LELLRNLKSK SGLAFRKDPP PEPSPSKGSP 421: CRGPLCGCCP GRSSQKVSLK DRVFSSPRGV AAKGKGSPQA QTVRRSPSAD QSLEDSPSKV 481: PKSWSFGDRS RARQAFRIKG AASRQNSEEA SLPGEDIVDD KSCPCEFVTE DLTPGLKVSI 541: RAVCVMRFLV SKRKFKESLR PYDVMDVIEQ YSAGHLDMLS RIKSLQSRVD QIVGRGPAIT 601: DKDRTKGPAE AELPEDPSMM GRLGKVEKQV LSMEKKLDFL VNIYMQRMGI PPTETEAYFG 661: AKEPEPAPPY HSPEDSREHV DRHGCIVKIV RSSSSTGQKN FSAPPAAPPV QCPPSTSWQP 721: QSHPRQGHGT SPVGDHGSLV RIPPPPAHER SLSAYGGGNR ASMEFLRQED TPGCRPPEGN 781: LRDSDTSISI PSVDHEELER SFSGFSISQS KENLDALNSC YAAVAPCAKV RPYIAEGESD 841: TDSDLCTPCG PPPRSATGEG PFGDVGWAGP RK