TCDB is operated by the Saier Lab Bioinformatics Group

2.A.18 The Amino Acid/Auxin Permease (AAAP) Family

The AAAP family includes hundreds of proteins from plants, animals, yeast and fungi. Individual permeases of the AAAP family transport auxin (indole-3-acetic acid), a single amino acid or multiple amino acids. Some of these permeases exhibit very broad specificities transporting all twenty amino acids naturally found in proteins. Some also transport D-amino acids. There are 7 AAAP paralogues in Saccharomyces cerevisiae, at least 9 in Arabidopsis thaliana and at least 5 in Caenorhabditis elegans. Six AAPs in A. thaliana transport neutral and charged amino acids with varying specificities and affinities (Fischer et al., 2002). All transport neutral amino acids and some acidic amino acids, always with just one proton. AAP3 and AAP5 are the only ones transporting basic amino acids, and only AAP6 transports aspartate (Fischer et al., 2002). The analysis of genes encoding AAPs in apple has been reported (Feng et al. 2022).

AAAP family proteins, all from eukaryotes, vary from 376 to 713 amino acyl residues in length, but most are of 400-500 residues. Most of the size variation occurs as a result of the presence of long N-terminal hydrophilic extensions in some of the proteins. Some of the yeast proteins are particularly long. Variation in the loops and the C-termini also occurs. These proteins exhibit 11 (or 10) putative transmembrane α-helical spanners (TMSs). One homologue, AAP1 of A. thaliana (TC #2.A.18.2.1), has 11 established TMSs (Chang and Bush, 1997). Members of the family have been tabulated (sometimes with functions) for foxtail millet (Setaria italica) (Yang et al. 2021).  Extranuclear auxin signaling as well as intronuclear auxin signaling has been documented (Pérez-Henríquez and Yang 2023).

Among animal AAAP family members are numerous growth regulating System A and System N isoforms, each exhibiting distinctive tissue and subcellular localizations. The different isoforms also exhibit different relative affinities for the amino acid substrates. Some catalyze H+ antiport and can function bidirectionally. Since Systems A are electrogenic although Systems N are not, the amino acid:cation stoichiometries may differ (Chaudhry et al., 2001, 2002; Varoqui et al., 2000).

Six auxin/amino acid permeases (AAAPs) from Arabidopsis mediate transport of a wide spectrum of amino acids (Fischer et al., 2002). AAAPs are distantly related to plasma membrane amino acid transport systems N and A and to vesicular transporters such as VGAT from mammals. Although capable of recognizing and transporting a wide spectrum of amino acids, individual AAAPs differ with respect to specificity. Apparent substrate affinities are influenced by structure and net charge and vary by three orders of magnitude (Fischer et al., 2002). AAAPs mediate cotransport of neutral amino acids with one proton, and uncharged forms of acidic and basic amino acids are cotransported with one proton. Since all AAAPs are differentially expressed, different tissues may be supplied with a different spectrum of amino acids.

Amino acids increase the activity of the microenvironmental sensor mechanistic Target of Rapamycin Complex 1 (mTORC1) to promote cellular growth and anabolic processes. They can be brought into cells by the closely related Proton-assisted Amino acid Transporter (PAT or SLC36) subfamily, and the Sodium-coupled Neutral Amino acid Transporter (SNAT or SLC38) subfamily, both members of the AAAP family. Members of both families can act as amino acid-stimulated receptors, or so-called 'transceptors,' connecting amino acids to mTORC1 activation (Fan and Goberdhan 2018). PATs and SNATs at the surfaces of multiple intracellular compartments are linked to the recruitment and activation of different pools of mTORC1. Late endosomes and lysosomes are mTORC1 regulatory hubs, but a Golgi-localized PAT is also required for mTORC1 activation. PATs and SNATs can also traffic between the cell surface and intracellular compartments, with regulation of this movement providing a means of controlling their mTORC1 regulatory activity (Fan and Goberdhan 2018).


The generalized transport reaction catalyzed by the proteins of the AAAP family is:

Substrate (out) + nH+ (out) → Substrate (in) + nH+ (in)


This family belongs to the: APC Superfamily.

References associated with 2.A.18 family:

Akbudak, M.A. and E. Filiz. (2020). Genome-wide investigation of proline transporter (ProT) gene family in tomato: Bioinformatics and expression analyses in response to drought stress. Plant Physiol. Biochem 157: 13-22. [Epub: Ahead of Print] 33069977
Anderson, C.M., A. Howard, J.R. Walters, V. Ganapathy, and D.T. Thwaites. (2009). Taurine uptake across the human intestinal brush-border membrane is via two transporters: H+-coupled PAT1 (SLC36A1) and Na+- and Cl--dependent TauT (SLC6A6). J. Physiol. 587: 731-744. 19074966
Aubrey, K.R., F.M. Rossi, R. Ruivo, S. Alboni, G.C. Bellenchi, A. Le Goff, B. Gasnier, and S. Supplisson. (2007). The transporters GlyT2 and VIAAT cooperate to determine the vesicular glycinergic phenotype. J. Neurosci. 27: 6273-6281. 17554001
Bagchi, S., H.A. Baomar, S. Al-Walai, S. Al-Sadi, and R. Fredriksson. (2014). Histological analysis of SLC38A6 (SNAT6) expression in mouse brain shows selective expression in excitatory neurons with high expression in the synapses. PLoS One 9: e95438. 24752331
Balkrishna, S., A. Bröer, A. Kingsland, and S. Bröer. (2010). Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes. Am. J. Physiol. Cell Physiol. 299: C1047-1057. 20739622
Balzan, S., G.S. Johal, and N. Carraro. (2014). The role of auxin transporters in monocots development. Front Plant Sci 5: 393. 25177324
Bennett, M.J., A. Marchant, H.G. Green, S.T. May, S.P. Ward, P.A. Millner, A.R. Walker, B. Schulz, and K.A. Feldmann. (1996). Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948-950. 8688077
Bensimon, A., M.D. Pizzagalli, F. Kartnig, V. Dvorak, P. Essletzbichler, G.E. Winter, and G. Superti-Furga. (2020). Targeted Degradation of SLC Transporters Reveals Amenability of Multi-Pass Transmembrane Proteins to Ligand-Induced Proteolysis. Cell Chem Biol. [Epub: Ahead of Print] 32386596
Bock, K.W., D. Honys, J.M. Ward, S. Padmanaban, E.P. Nawrocki, K.D. Hirschi, D. Twell, and H. Sze. (2006). Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol. 140: 1151-1168. 16607029
Boll, M., H. Daniel, and B. Gasnier. (2004). The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Arch 447: 776-779. 12748860
Boll, M., M. Foltz, I. Rubio-Aliaga, G. Kottra, and H. Daniel. (2002). Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters. J. Biol. Chem. 277: 22966-22973. 11959859
Bröer, S. (2008). Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 88: 249-286. 18195088
Carraro, N., T.E. Tisdale-Orr, R.M. Clouse, A.S. Knöller, and R. Spicer. (2012). Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus. Front Plant Sci 3: 17. 22645571
Castellano, B.M., A.M. Thelen, O. Moldavski, M. Feltes, R.E. van der Welle, L. Mydock-McGrane, X. Jiang, R.J. van Eijkeren, O.B. Davis, S.M. Louie, R.M. Perera, D.F. Covey, D.K. Nomura, D.S. Ory, and R. Zoncu. (2017). Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science 355: 1306-1311. 28336668
Chan, K., S.M. Busque, M. Sailer, C. Stoeger, S. Bröer, H. Daniel, I. Rubio-Aliaga, and C.A. Wagner. (2015). Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflugers Arch. [Epub: Ahead of Print] 26490457
Chang, H.C. and D.R. Bush. (1997). Topology of NAT2 (AAP1): a prototypical example of a new family of amino acid transporters. J. Biol. Chem. 272: 30552-30557. 9374550
Chardwiriyapreecha S., Mukaiyama H., Sekito T., Iwaki T., Takegawa K. and Kakinuma Y. (2010). Avt5p is required for vacuolar uptake of amino acids in the fission yeast Schizosaccharomyces pombe. FEBS Lett. 584(11):2339-45. 20388511
Chaudhry, F.A., D. Krizaj, P. Larsen, R.J. Reimer, J. Storm-Mathiesen, D.R. Copenhagen, M.P. Kavanaugh, and R.H. Edwards. (2001). Coupled and uncoupled proton movement regulates amino acid transport by System N. EMBO J. 20: 7041-7051. 11742981
Chaudhry, F.A., D. Schmitz, R.J. Reimer, P. Larsson, A.T. Gray, R. Nicoll, M. Kavanaugh, and R.H. Edwards. (2002). Glutamine uptake by neurons: interaction of protons with system A transporters. J. Neurosci. 22: 62-72. 11756489
Chen, L. and D.R. Bush. (1997). LHT1, a lysine- and histidine-specific amino acid transporter in arabidopsis. Plant Physiol. 115: 1127-1134. 9390441
Chowdhury, B., Y.B. Chan, and E.A. Kravitz. (2017). Putative transmembrane transporter modulates higher-level aggression in Drosophila. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 28193893
Dorn M., Weiwad M., Markwardt F., Laug L., Rudolph R., Brandsch M. and Bosse-Doenecke E. (2009). Identification of a disulfide bridge essential for transport function of the human proton-coupled amino acid transporter hPAT1. J Biol Chem. 284(33):22123-32. 19549785
Fan, S.J. and D.C.I. Goberdhan. (2018). PATs and SNATs: Amino Acid Sensors in Disguise. Front Pharmacol 9: 640. 29971004
Fan, T., C. Wu, W. Yang, T. Lv, Y. Zhou, and C. Tian. (2023). The Gene Family in Rice: Molecular Characterization, Transport Functions and Expression Analysis. Plants (Basel) 12:. 36840165
Farsi, Z., J. Preobraschenski, G. van den Bogaart, D. Riedel, R. Jahn, and A. Woehler. (2016). Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles. Science 351: 981-984. 26912364
Fei, Y., M. Sugawara, T. Nakanishi, W. Huang, H. Wang, P.D. Prasad, F.H. Leibach, and V. Ganapathy. (2000). Primary structure, genomic organization, and functional and electrogenic characteristics of human system N1, a Na+- and H+-coupled glutamine transporter. J. Biol. Chem. 275: 23707-23717. 10823827
Feng, H., N. Edwards, C.M.H. Anderson, M. Althaus, R.P. Duncan, Y.C. Hsu, C.W. Luetje, D.R.G. Price, A.C.C. Wilson, and D.T. Thwaites. (2019). Trading amino acids at the aphid- symbiotic interface. Proc. Natl. Acad. Sci. USA 116: 16003-16011. 31337682
Feng, Z.Q., X. Wang, T. Li, X.F. Wang, H.F. Li, and C.X. You. (2022). Genome-wide identification and comparative analysis of genes encoding AAPs in apple (Malus × domestica Borkh.). Gene 832: 146558. 35569773
Fischer, W-N., M. Kwart, S. Hummel, and W.B. Frommer. (1995). Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J. Biol. Chem. 270: 16315-16320. 7608199
Fischer, W.N., D.D. Loo, W. Koch, U. Ludewig, K.J. Boorer, M. Tegeder, D. Rentsch, E.M. Wright, and W.B. Frommer. (2002). Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J. 29: 717-731. 12148530
Forde, N., C.A. Simintiras, R. Sturmey, S. Mamo, A.K. Kelly, T.E. Spencer, F.W. Bazer, and P. Lonergan. (2014). Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle. PLoS One 9: e100010. 24960174
Gandasi, N.R., V. Arapi, M.E. Mickael, P.A. Belekar, L. Granlund, L. Kothegala, R. Fredriksson, and S. Bagchi. (2021). Glutamine Uptake via SNAT6 and Caveolin Regulates Glutamine-Glutamate Cycle. Int J Mol Sci 22:. 33503881
Gasnier, B. (2004). The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflugers Arch 447: 756-759. 12750892
Ge, Y., Y. Gu, J. Wang, and Z. Zhang. (2018). Membrane topology of rat sodium-coupled neutral amino acid transporter 2 (SNAT2). Biochim. Biophys. Acta. 1860: 1460-1469. 29678469
Girardi, E., A. César-Razquin, S. Lindinger, K. Papakostas, J. Konecka, J. Hemmerich, S. Kickinger, F. Kartnig, B. Gürtl, K. Klavins, V. Sedlyarov, A. Ingles-Prieto, G. Fiume, A. Koren, C.H. Lardeau, R. Kumaran Kandasamy, S. Kubicek, G.F. Ecker, and G. Superti-Furga. (2020). A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nat Chem Biol 16: 469-478. 32152546
Goberdhan, D.C., D. Meredith, C.A. Boyd, and C. Wilson. (2005). PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids. Development. 132: 2365-2375. 15843412
Gu, S., H.L. Roderick, P. Camacho, and J.X. Jiang. (2000). Identification and characterization of an amino acid transporter expressed differentially in liver. Proc. Natl. Acad. Sci. USA 97: 3230-3235. 10716701
Gu, X., J.M. Orozco, R.A. Saxton, K.J. Condon, G.Y. Liu, P.A. Krawczyk, S.M. Scaria, J.W. Harper, S.P. Gygi, and D.M. Sabatini. (2017). SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358: 813-818. 29123071
Hägglund, M.G., S. Sreedharan, V.C. Nilsson, J.H. Shaik, I.M. Almkvist, S. Bäcklin, O. Wrange, and R. Fredriksson. (2011). Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J. Biol. Chem. 286: 20500-20511. 21511949
Hatanaka, T., W. Huang, H. Wang, M. Sugawara, P.D. Prasad, F.H. Leibach, and V. Ganapathy. (2000). Primary structure, functional characteristics and tissue expression pattern of human ATA2, a subtype of amino acid transport system A. Biochim. Biophys. Acta 1467: 1-6. 10930503
Hatanaka, T., Y. Hatanaka, and M. Setou. (2006b). Regulation of amino acid transporter ATA2 by ubiquitin ligase Nedd4-2. J. Biol. Chem. 281: 35922-35930. 17003038
Hatanaka, T., Y. Hatanaka, J. Tsuchida, V. Ganapathy, and M. Setou. (2006a). Amino acid transporter ATA2 is stored at the trans-Golgi network and released by insulin stimulus in adipocytes. J. Biol. Chem. 281: 39273-39284. 17050538
Hellsten, S.V., M.G. Hägglund, M.M. Eriksson, and R. Fredriksson. (2017). The neuronal and astrocytic protein SLC38A10 transports glutamine, glutamate, and aspartate, suggesting a role in neurotransmission. FEBS Open Bio 7: 730-746. 28593130
Hirner, A., F. Ladwig, H. Stransky, S. Okumoto, M. Keinath, A. Harms, W.B. Frommer, and W. Koch. (2006). Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18: 1931-1946. 16816136
Hyde, R., E.L. Cwiklinski, K. MacAulay, P.M. Taylor, and H.S. Hundal. (2007). Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability. J. Biol. Chem. 282: 19788-19798. 17488712
Jiang, H., Y. Li, H. Qin, Y. Li, H. Qi, C. Li, N. Wang, R. Li, Y. Zhao, S. Huang, J. Yu, X. Wang, R. Zhu, C. Liu, Z. Hu, Z. Qi, D. Xin, X. Wu, and Q. Chen. (2018). Identification of Major QTLs Associated With First Pod Height and Candidate Gene Mining in Soybean. Front Plant Sci 9: 1280. 30283463
Juge, N., A. Muroyama, M. Hiasa, H. Omote, and Y. Moriyama. (2009). Vesicular inhibitory amino acid transporter is a Cl-/γ-aminobutyrate Co-transporter. J. Biol. Chem. 284: 35073-35078. 19843525
Jung, J., H.M. Genau, and C. Behrends. (2015). Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9. Mol. Cell Biol. 35: 2479-2494. 25963655
Kasozi, K.I., E.T. MacLeod, I. Ntulume, and S.C. Welburn. (2022). An Update on African Trypanocide Pharmaceutics and Resistance. Front Vet Sci 9: 828111. 35356785
Kasture, A.S., F.P. Fischer, L. Kunert, M.L. Burger, A.C. Burgstaller, A. El-Kasaby, T. Hummel, and S. Sucic. (2022). as a model for unraveling unique molecular features of epilepsy elicited by human GABA transporter 1 variants. Front Neurosci 16: 1074427. 36741049
Kuht, H.J., J. Han, G.D.E. Maconachie, S.E. Park, S.T. Lee, R. McLean, V. Sheth, M. Hisaund, B. Dawar, N. Sylvius, U. Mahmood, F.A. Proudlock, I. Gottlob, H.T. Lim, and M.G. Thomas. (2020). SLC38A8 mutations result in arrested retinal development with loss of cone photoreceptor specialisation. Hum Mol Genet. [Epub: Ahead of Print] 32744312
Kvamme, E., I.A. Torgner, and B. Roberg. (2001). Kinetics and localization of brain phosphate activated glutaminase. J. Neurosci. Res 66: 951-958. 11746423
Lei, H.T., J. Ma, S. Sanchez Martinez, and T. Gonen. (2018). Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state. Nat Struct Mol Biol 25: 522-527. 29872228
Marafi, D., J.M. Fatih, R. Kaiyrzhanov, M.P. Ferla, C. Gijavanekar, A. Al-Maraghi, N. Liu, E. Sites, H.S. Alsaif, M. Al-Owain, M. Zakkariah, E. El-Anany, U. Guliyeva, S. Guliyeva, C. Gaba, A. Haseeb, A.M. Alhashem, E. Danish, V. Karageorgou, C. Beetz, A.A. Subhi, S.V. Mullegama, E. Torti, M. Sebastin, M.S. Breilyn, S. Duberstein, M.S. Abdel-Hamid, T. Mitani, H. Du, J.A. Rosenfeld, S.N. Jhangiani, Z. Coban Akdemir, R.A. Gibbs, J.C. Taylor, K.A. Fakhro, J.V. Hunter, D. Pehlivan, M.S. Zaki, J.G. Gleeson, R. Maroofian, H. Houlden, J.E. Posey, V.R. Sutton, F.S. Alkuraya, S.H. Elsea, and J.R. Lupski. (2021). Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy. Brain. [Epub: Ahead of Print] 34605855
McIntire, S.L., R.J. Reimer, K. Schuske, R.H. Edwards, and E.M. Jorgensen. (1997). Identification and characterization of the vesicular GABA transporter. Nature 389: 870-876. 9349821
Miyauchi, S., E.L. Abbot, L. Zhuang, R. Subramanian, V. Ganapathy, and D.T. Thwaites. (2005). Isolation and function of the amino acid transporter PAT1 (slc36a1) from rabbit and discrimination between transport via PAT1 and system IMINO in renal brush-border membrane vesicles. Mol. Membr. Biol. 22: 549-559. 16373326
Mohanta, T.K., N. Mohanta, and H. Bae. (2015). Identification and Expression Analysis of PIN-Like (PILS) Gene Family of Rice Treated with Auxin and Cytokinin. Genes (Basel) 6: 622-640. 26193322
Nakanishi, T., R. Kekuda, Y.J. Fei, T. Hatanaka, M. Sugawara, R.G. Martindale, F.H. Leibach, P.D. Prasad, and V. Ganapathy. (2001). Cloning and functional characterization of a new subtype of the amino acid transport system N. Am. J. Physiol. Cell Physiol. 281: C1757-1768. 11698233
Okumoto, S., R. Schmidt, M. Tegeder, W.N. Fischer, D. Rentsch, W.B. Frommer, and W. Koch. (2002). High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J. Biol. Chem. 277: 45338-45346. 12244056
Perez, Y., L. Gradstein, H. Flusser, B. Markus, I. Cohen, Y. Langer, M. Marcus, T. Lifshitz, R. Kadir, and O.S. Birk. (2014). Isolated foveal hypoplasia with secondary nystagmus and low vision is associated with a homozygous SLC38A8 mutation. Eur J Hum Genet 22: 703-706. 24045842
Pérez-Henríquez, P. and Z. Yang. (2023). Extranuclear auxin signaling: a new insight into auxin''s versatility. New Phytol 237: 1115-1121. 36336825
Platzer, K., H. Sticht, C. Bupp, M. Ganapathi, E.M. Pereira, G. Le Guyader, F. Bilan, L.B. Henderson, J.R. Lemke, H. Taschenberger, N. Brose, R. Abou Jamra, and S.M. Wojcik. (2022). De Novo Missense Variants in SLC32A1 Cause a Developmental and Epileptic Encephalopathy Due to Impaired GABAergic Neurotransmission. Ann Neurol. [Epub: Ahead of Print] 36073542
Rabby, M.G., M.M. Hossen, M.M. Kamal, and M.N. Islam. (2022). Genome-Wide Identification and Functional Analysis of Lysine Histidine Transporter (LHT) Gene Families in Maize. Genet Res (Camb) 2022: 2673748. 35528221
Rebsamen, M., L. Pochini, T. Stasyk, M.E. de Araújo, M. Galluccio, R.K. Kandasamy, B. Snijder, A. Fauster, E.L. Rudashevskaya, M. Bruckner, S. Scorzoni, P.A. Filipek, K.V. Huber, J.W. Bigenzahn, L.X. Heinz, C. Kraft, K.L. Bennett, C. Indiveri, L.A. Huber, and G. Superti-Furga. (2015). SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519: 477-481. 25561175
Reimer, R.J., F.A. Chaudhury, A.T. Gray, and R.H. Edwards. (2000). Amino acid transport System A resembles System N in sequence but differs in mechanism. Proc. Natl. Acad. Sci. USA 97: 7715-7720. 10859363
Reinhardt, D., E.-R. Pesce, P. Stieger, T. Mandel, K. Baltensperger, M. Bennett, J. Traas, J. Friml, and C. Kuhlemeier. (2003). Regulation of phyllotaxis by polar auxin transport. Nature 426: 255-260. 14628043
Rentsch, D., B. Hirner, E. Schmeizer, and W.B. Frommer. (1996). Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8: 1437-1446. 8776904
Rode, J., L. Yang, J. König, A.N. Hutchinson, R. Wall, N. Venizelos, R.J. Brummer, I. Rangel, and R. Vumma. (2021). Butyrate Rescues Oxidative Stress-Induced Transport Deficits of Tryptophan: Potential Implication in Affective or Gut-Brain Axis Disorders. Neuropsychobiology 80: 253-263. 33075780
Rodríguez, A., A. Ortega, L.C. Berumen, M.G. García-Alcocer, C. Giménez, and F. Zafra. (2014). Expression of the System N transporter (SNAT5/SN2) during development indicates its plausible role in glutamatergic neurotransmission. Neurochem Int 73: 166-171. 24333324
Rubio-Aliaga, I., M. Boll, D.M.V. Weisenhorn, M. Foltz, G. Kottra, and H. Daniel. (2004). The proton/amino acid cotransporter PAT2 is expressed in neurons with a different subcellular localization than its paralog PAT1. J. Biol. Chem. 279: 2754-2760. 14600155
Russnak, R., D. Konczal, and S.L. McIntire. (2001). A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J. Biol. Chem. 276: 23849-23857. 11274162
Sakaew, W., A. Tachow, W. Thoungseabyoun, S. Khrongyut, A. Rawangwong, Y. Polsan, W. Masahiko, H. Kondo, and W. Hipkaeo. (2018). Expression and localization of VIAAT in distal uriniferous tubular epithelium of mouse. Ann Anat 222: 21-27. [Epub: Ahead of Print] 30448467
Santiago, J.P. and M. Tegeder. (2016). Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids. Plant Physiol. 171: 508-521. 27016446
Schlisselberg, D., E. Mazarib, E. Inbar, D. Rentsch, P.J. Myler, and D. Zilberstein. (2015). Size does matter: 18 amino acids at the N-terminal tip of an amino acid transporter in Leishmania determine substrate specificity. Sci Rep 5: 16289. 26549185
Schmidt, R., H. Stransky, and W. Koch. (2007). The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta 226: 805-813. 17476526
Schmidt, R.S., J.P. Macêdo, M.E. Steinmann, A.G. Salgado, P. Bütikofer, E. Sigel, D. Rentsch, and P. Mäser. (2018). Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J. 285: 1012-1023. 29063677
Shaked-Mishan, P., M. Suter-Grotemeyer, T. Yoel-Almagor, N. Holland, D. Zilberstein, and D. Rentsch D. (2006). A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol. Microbiol. 60: 30-38. 16556218
Shen, K. and D.M. Sabatini. (2018). Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc. Natl. Acad. Sci. USA 115: 9545-9550. 30181260
Shi, Q., R. Padmanabhan, C.J. Villegas, S. Gu, and J.X. Jiang. (2011). Membrane Topological Structure of Neutral System N/A Amino Acid Transporter 4 (SNAT4) Protein. J. Biol. Chem. 286: 38086-38094. 21917917
Sugawara, M., T. Nakanishi, Y.J. Fei, R.G. Martindale, M.E. Ganapathy, F.H. Leibach, and V. Ganapathy. (2000). Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. Biochim. Biophys. Acta. 1509: 7-13. 11118514
Sugawara, M., T. Nakanishi, Y.J. Fei, W. Huang, M.E. Ganapathy, F.H. Leibach, and V. Ganapathy. (2000). Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J. Biol. Chem. 275: 16473-16477. 10747860
Sundberg, B.E., E. Wååg, J.A. Jacobsson, O. Stephansson, J. Rumaks, S. Svirskis, J. Alsiö, E. Roman, T. Ebendal, V. Klusa, and R. Fredriksson. (2008). The evolutionary history and tissue mapping of amino acid transporters belonging to solute carrier families SLC32, SLC36, and SLC38. J Mol Neurosci 35: 179-193. 18418736
Svennerstam, H., U. Ganeteg, and T. Näsholm. (2008). Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol 180: 620-630. 18681934
Svennerstam, H., U. Ganeteg, C. Bellini, and T. Näsholm. (2007). Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol. 143: 1853-1860. 17293438
Swarup, R. and R. Bhosale. (2019). Developmental Roles of AUX1/LAX Auxin Influx Carriers in Plants. Front Plant Sci 10: 1306. 31719828
Taurino, G., M. Chiu, M.G. Bianchi, E. Griffini, and O. Bussolati. (2023). The /SNAT5 amino acid transporter: from pathophysiology to pro-cancer roles in the tumor microenvironment. Am. J. Physiol. Cell Physiol. [Epub: Ahead of Print] 37458433
Thwaites, D.T. and C.M. Anderson. (2011). The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br J Pharmacol 164: 1802-1816. 21501141
Tian, J., K. Chang, Y. Lei, S. Li, J. Wang, C. Huang, and F. Zhong. (2023). Genome-Wide Identification of Proline Transporter Gene Family in Non-Heading Chinese Cabbage and Functional Analysis of under Heat Stress. Int J Mol Sci 25:. 38203270
Trip, H., M.E. Evers, and A.J.M. Driessen. (2004). PcMtr, an aromatic and neutral aliphatic amino acid permease of Penicillium chrysogenum. Biochim. Biophys. Acta 1667: 167-173. 15581852
Tsitsiou E., Sibley CP., D'Souza SW., Catanescu O., Jacobsen DW. and Glazier JD. (2009). Homocysteine transport by systems L, A and y+L across the microvillous plasma membrane of human placenta. J Physiol. 587(Pt 16):4001-13. 19564394
Varoqui, H., H. Zhu, D. Yao, H. Ming, and J.D. Erickson. (2000). Cloning and functional identification of a neuronal glutamine transporter. J. Biol. Chem. 275: 4049-4054. 10660562
Voigt, V., L. Laug, K. Zebisch, I. Thondorf, F. Markwardt, and M. Brandsch. (2013). Transport of the areca nut alkaloid arecaidine by the human proton-coupled amino acid transporter 1 (hPAT1). J Pharm Pharmacol 65: 582-590. 23488788
Wang, S., Z.Y. Tsun, R.L. Wolfson, K. Shen, G.A. Wyant, M.E. Plovanich, E.D. Yuan, T.D. Jones, L. Chantranupong, W. Comb, T. Wang, L. Bar-Peled, R. Zoncu, C. Straub, C. Kim, J. Park, B.L. Sabatini, and D.M. Sabatini. (2015). Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347: 188-194. 25567906
Wang, Z., F. Yemanyi, A.K. Blomfield, K. Bora, S. Huang, C.H. Liu, W.R. Britton, S.S. Cho, Y. Tomita, Z. Fu, J.X. Ma, W.H. Li, and J. Chen. (2022). Amino acid transporter SLC38A5 regulates developmental and pathological retinal angiogenesis. Elife 11:. 36454214
Williams, L.E. and A.J. Miller. (2001). Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 659-688. 11337412
Wipf, D., U. Ludewig, M. Tegeder, D. Rentsch, W. Koch, and W.B. Frommer. (2002). Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem. Sci. 27: 139-147. 11893511
Wu, H., P. Hu, Y. Xu, C. Xiao, Z. Chen, X. Liu, J. Jia, and H. Xu. (2021). Phloem Delivery of Fludioxonil by Plant Amino Acid Transporter-Mediated Polysuccinimide Nanocarriers for Controlling Fusarium Wilt in Banana. J Agric Food Chem 69: 2668-2678. 33629581
Wunderlich, J. (2022). Updated List of Transport Proteins in. Front Cell Infect Microbiol 12: 926541. 35811673
Xiao, Y., C. Hu, T. Hsiang, and J. Li. (2023). Amino acid permease RcAAP1 increases the uptake and phloem translocation of an L-valine-phenazine-1-carboxylic acid conjugate. Front Plant Sci 14: 1191250. 37332709
Yang, Y., Y. Chai, J. Liu, J. Zheng, Z. Zhao, A. Amo, C. Cui, Q. Lu, L. Chen, and Y.G. Hu. (2021). Amino acid transporter (AAT) gene family in foxtail millet (Setaria italica L.): widespread family expansion, functional differentiation, roles in quality formation and response to abiotic stresses. BMC Genomics 22: 519. 34238217
Yao, D., B. Mackenzie, H. Ming, H. Varoqui, H. Zhu, M.A. Hediger, and J.D. Erickson. (2000). A novel system A isoform mediating Na+/neutral amino acid cotransport. J. Biol. Chem. 275: 22790-22797. 10811809
Young, G.B., D.L. Jack, D.W. Smith, and M.H. Saier, Jr. (1999). The amino acid/auxin:proton symport permease family. Biochim. Biophys. Acta 1415: 306-322. 9889387
Zhang, Z. and C. Grewer. (2007). The sodium-coupled neutral amino acid transporter SNAT2 mediates an anion leak conductance that is differentially inhibited by transported substrates. Biophys. J. 92: 2621-2632. 17237199
Zhang, Z., C.B. Zander, and C. Grewer. (2011). The C-terminal domain of the neutral amino acid transporter SNAT2 regulates transport activity through voltage-dependent processes. Biochem. J. 434: 287-296. 21158741
Zhao, L., X. Ji, X. Zhang, L. Li, Y. Jin, and W. Liu. (2018). FLCN is a novel Rab11A-interacting protein and is involved in the Rab11A-mediated recycling transport. J Cell Sci. [Epub: Ahead of Print] 30446510