TCDB is operated by the Saier Lab Bioinformatics Group

2.A.3 The Amino Acid-Polyamine-Organocation (APC) Superfamily

The APC superfamily of transport proteins includes members that function as solute:cation symporters and solute:solute antiporters (Saier, 2000; Wong et al. 2012; Schweikhard and Ziegler 2012). They occur in bacteria, archaea, yeast, fungi, unicellular eukaryotic protists, slime molds, plants and animals (Saier, 2000). They vary in length, being as small as 350 residues and as large as 850 residues. The smaller proteins are generally of prokaryotic origin while the larger ones are of eukaryotic origin. Most of them possess twelve transmembrane α-helical spanners but have a re-entrant loop involving TMSs 2 and 3 (Gasol et al., 2004). Members of one family within the APC superfamily (SGP; TC# 2.A.3.9) are amino acid receptors rather than transporters (Cabrera-Martinez et al., 2003), and are truncated at their C-termini, relative to the transporters, having 10 TMSs (Jack et al., 2000). The eukaryotic members of another family (CAT; TC# 2.A.3.3) and the members of a prokaryotic family (AGT; TC #2.A.3.11) have 14 TMSs (Lorca et al., 2003). The larger eukaryotic and archaeal proteins possess N- and C-terminal hydrophilic extensions. Some animal proteins, for example, those in the LAT family (TC# 2.A.3.8) including ASUR4 (gbY12716) and SPRM1 (gbL25068) associate with a type 1 transmembrane glycoprotein that is essential for insertion or activity of the permease and forms a disulfide bridge with it. These glycoproteins include the CD98 heavy chain protein of Mus musculus (gbU25708) and the orthologous 4F2 cell surface antigen heavy chain of Homo sapiens (spP08195). The latter protein is required for the activity of the cystine/glutamate antiporter (2.A.3.8.5) which maintains cellular redox balance and cysteine/glutathione levels (Sato et al., 2005). They are members of the rBAT family of mammalian proteins (TC #8.A.9). Two APC family members, LAT1 and LAT2 (TC #2.A.3.8.7), transport a neurotoxicant, the methylmercury-L-cysteine complex, by molecular mimicry (Simmons-Willis et al., 2002). Hip1 of S. cerevisiae (TC #2.A.3.1.5) has been implicated in heavy metal transport. Distant constituents of the APC superfamily are the AAAP family (TC# 2.A.18), the ArAAP family (TC# 2.A.42) and the STP family (TC# 2.A.43). Some of these proteins exhibit 11 TMSs. Eukaryotic members of this superfamily have been reviewed by Wipf et al. (2002) and Fischer et al. (1998). Cationic amino acid transporters (CAT; SLC7A1 - 4 and 14) play roles in malignant tumors and immune microenvironment (You et al. 2023). Transporters in the APC superfamily influence ferroptosis which may inhibit bone formation and promote bone absorption through oxidative stress, thus leading to osteoporosis. The study of ferroptosis on osteoblasts and osteoclasts may allow for the diagnosis and treatment of osteoporosis (Cao et al. 2023).

In CadB of E. coli (2.A.3.2.2), amino acid residues involved in both uptake and excretion, or solely in excretion, are located in the cytoplasmic loops and the cytoplasmic side of TMSs, whereas residues involved in uptake are located in the periplasmic loops and the TMSs (Soksawatmaekhin et al., 2006). A hydrophilic cavity is proposed to be formed by TMSs II, III, IV, VI, VII, X, XI, and XII (Soksawatmaekhin et al., 2006). Based on 3-d structures of APC superfamily members, Rudnick (2011) has proposed the pathway for transport and suggested a 'rocking bundle' mechanism of transport.  The genome wide identification and characterization of the amino acid transporter (AAT) genes regulating seed protein content in chickpea (Cicer arietinum L.) has been published (Kalwan et al. 2023).  Rigid bodies and relative movements of TMSs occur during distinct steps of the transport cycle (Licht et al. 2024). In all transporters with the LeuT fold, the bundle (first two TMSs of each repeat) rotates relative to the hash (third and fourth TMSs). Motions of the arms (fifth TMS) to close or open the intracellular and outer vestibules are common, as is a TMS1a swing, with notable variations in the opening-closing motions of the outer vestibule. These analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets (Licht et al. 2024).

.Shaffer et al. (2009) have presented the crystal structure of apo-ApcT, a proton-coupled broad-specificity amino acid transporter, at 2.35 Å resolution. The structure contains 12 transmembrane helices, with the first 10 consisting of an inverted structural repeat of 5 transmembrane helices like LeuT (TC #2.A.22.4.2). The ApcT structure reveals an inward-facing, apo state and an amine moiety of Lys158 located in a position equivalent to the Na2 ion of LeuT. They proposed that Lys158 is central to proton-coupled transport and that the amine group serves the same functional role as the Na2 ion in LeuT, thus demonstrating common principles among proton- and sodium-coupled transporters.

The structure and function of the cadaverine-lysine antiporter, CadB (2.A.3.2.2), and the putrescine-ornithine antiporter, PotE (2.A.3.2.1), in E. coli have been evaluated using model structures based on the crystal structure of AdiC (2.A.3.2.5), an agmatine-arginine antiporter. The central cavity of CadB, containing the substrate binding site is wider than that of PotE, mirroring the different sizes of cadaverine and putrescine. The size of the central cavity of CadB and PotE is dependent on the angle of transmembrane helix 6 (TM6) against the periplasm. Tyr(73), Tyr(89), Tyr(90), Glu(204), Tyr(235), Asp(303), and Tyr(423) of CadB, and Cys(62), Trp(201), Glu(207), Trp(292), and Tyr(425) of PotE are strongly involved in the antiport activities. In addition, Trp(43), Tyr(57), Tyr(107), Tyr(366), and Tyr(368) of CadB are involved preferentially in cadaverine uptake at neutral pH, while only Tyr(90) of PotE is involved preferentially in putrescine uptake. The results indicated that the central cavity of CadB consists of TMs 2, 3, 6, 7, 8, and 10, and that of PotE consists of TMs 2, 3, 6, and 8. Several residues are necessary for recognition of cadaverine in the periplasm because the level of cadaverine is much lower than that of putrescine at neutral pH.

The roughly barrel-shaped AdiC subunit of approximately 45 Å diameter consists of 12 transmembrane helices, TMS1 and TMS6 being interrupted by short non-helical stretches in the middle of their transmembrane spans (Fang et al., 2009). Biochemical analysis of homologues places the amino and carboxy termini on the intracellular side of the membrane. TM1–TM10 surround a large cavity exposed to the extracellular solution. These ten helices comprise two inverted structural repeats. TM1–TM5 of AdiC align well with TM6–TM10 turned 'upside down' around a pseudo-two-fold axis nearly parallel to the membrane plane. Thus, TMS1 pairs with TMS6, TMS2 with TMS7, and etc.. Helices TMS11 and TMS12, non-participants in this repeat, provide most of the 2,500 Å2 homodimeric interface. AdiC mirrors the common fold observed unexpectedly in four phylogenetically unrelated families of Na+-coupled solute transporters: BCCT (2.A.15), NCS1 (2.A.39), SSS (2.A.21) and NSS (2.A.22) (Fang et al., 2009).

Transport reactions catalyzed by APC family members include:

Solute:proton symport - S (out) + nH+ (out) → S (in) + nH+ (in)

Solute:solute antiport - S1 (out) + S2 (in) ⇌ S1 (in) + S2 (out)

This family belongs to the: APC Superfamily.

References associated with 2.A.3 family:

and Rudnick G. (2011). Cytoplasmic permeation pathway of neurotransmitter transporters. Biochemistry. 50(35):7462-75. 21774491
Aouida, M., A. Leduc, R. Poulin, II, and D. Ramotar. (2005). AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J. Biol. Chem. 280: 24267-24276. 15855155
Aspuria, P.J. and F. Tamanoi. (2008). The Tsc/Rheb signaling pathway controls basic amino acid uptake via the Cat1 permease in fission yeast. Mol. Genet. Genomics 279: 441-450. 18219492
Baisa, G., N.J. Stabo, and R.A. Welch. (2013). Characterization of Escherichia coli D-cycloserine transport and resistant mutants. J. Bacteriol. 195: 1389-1399. 23316042
Bartoccioni, P., C. Del Rio, M. Ratera, L. Kowalczyk, J.M. Baldwin, A. Zorzano, M. Quick, S.A. Baldwin, J.L. Vázquez-Ibar, and M. Palacín. (2010). Role of transmembrane domain 8 in substrate selectivity and translocation of SteT, a member of the L-amino acid transporter (LAT) family. J. Biol. Chem. 285: 28764-28776. 20610400
Bianconi, D., E. Fabian, M. Herac, M. Kieler, J. Thaler, G. Prager, and M. Unseld. (2022). Expression of CD98hc in Pancreatic Cancer and Its Role in Cancer Cell Behavior. J Cancer 13: 2271-2280. 35517419
Bik-Multanowski, M., A. Madetko-Talowska, I. Betka, E. Swieczka, B. Didycz, K. Orchel-Szastak, K. Bik-Multanowska, E. Starostecka, J. Jaglowska, R. Mozrzymas, J. Zolkowska, K. Chyz, and D. Korycinska-Chaaban. (2020). Carriership of the rs113883650/rs2287120 haplotype of the () gene increases the risk of obesity in infants with phenylketonuria. Mol Genet Metab Rep 25: 100640. 32874918
Bik-Multanowski, M., B. Didycz, and K. Bik-Multanowska. (2022). Management precautions for risk of obesity are necessary among infants with PKU carrying the rs113883650 variant of the LAT1 gene: A cross-sectional study. PLoS One 17: e0264084. 35176108
Bippes, C.A., A. Zeltina, F. Casagrande, M. Ratera, M. Palacin, D.J. Muller, and D. Fotiadis. (2009). Substrate binding tunes conformational flexibility and kinetic stability of an amino acid antiporter. J. Biol. Chem. 284: 18651-18663. 19419962
Blinker, S., J. Vreede, P. Setlow, and S. Brul. (2021). Predicting the Structure and Dynamics of Membrane Protein GerAB from. Int J Mol Sci 22:. 33917581
Bröer, S. (2008). Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 88: 249-286. 18195088
Brechtel, C.E. and S.C. King. (1998). 4-Aminobutyrate (GABA) transporters from the amine-polyamine-choline superfamily: substrate specificity and ligand recognition profile of the 4-aminobutyrate permease from Bacillus subtilis. Biochem. J. 333(Pt3): 565-571. 9677314
Cabrera-Martinez, R.-M., F. Tovar-Rojo, V.R. Vepachedu, and P. Setlow. (2003). Effects of overexpression of nutrient receptors on germination of spores of Bacillus subtilis. J. Bacteriol. 185: 2457-2464. 12670969
Cao, Z., Y. Xue, and J. Wang. (2023). Screening diagnostic markers of osteoporosis based on ferroptosis of osteoblast and osteoclast. Aging (Albany NY) 15:. [Epub: Ahead of Print] 37770229
Cappellazzo, G., L. Lanfranco, M. Fitz, D. Wipf, and P. Bonfante. (2008). Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol. 147: 429-437. 18344417
Casagrande, F., M. Ratera, A.D. Schenk, M. Chami, E. Valencia, J.M. Lopez, D. Torrents, A. Engel, M. Palacin, and D. Fotiadis. (2008). Projection structure of a member of the amino acid/polyamine/organocation transporter superfamily. J. Biol. Chem. 283: 33240-33248. 18819925
Chairoungdua, A., H. Segawa, J.Y. Kim, K. Miyamoto, H. Haga, Y. Fukui, K. Mizoguchi, H. Ito, E. Takeda, H. Endou, and Y. Kanai. (1999). Identification of an amino acid transporter associated with the cystinuria-related type II membrane glycoprotein. J. Biol. Chem. 274: 28845-28848. 10506124
Chairoungdua, A., Y. Kanai, H. Matsuo, J. Inatomi, D.K. Kim, and H. Endou. (2001). Identification and characterization of a novel member of the heterodimeric amino acid transporter family presumed to be associated with an unknown heavy chain. J. Biol. Chem. 276: 49390-49399. 11591708
Chen, J.M., S. Uplekar, S.V. Gordon, and S.T. Cole. (2012). A point mutation in cycA partially contributes to the D-cycloserine resistance trait of Mycobacterium bovis BCG vaccine strains. PLoS One 7: e43467. 22912881
Choi, J., W. Li, B. Schindell, L. Ni, S. Liu, X. Zhao, J. Gong, M. Nyachoti, and C. Yang. (2020). Molecular cloning, tissue distribution and the expression of cystine/glutamate exchanger (xCT, SLC7A11) in different tissues during development in broiler chickens. Anim Nutr 6: 107-114. 32211536
Closs, E.I. (1996). CATs, a family of three distinct mammalian cationic amino acid transporters. Amino Acids 11: 193-208. 24178687
Closs, E.I., L.M. Albritton, J.W. Kim, and J.M. Cunningham. (1993). Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J. Biol. Chem. 268: 7538-7544. 8385111
Cooper, G.R. and A. Moir. (2011). Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168. J. Bacteriol. 193: 2261-2267. 21378181
Cosgriff, A.J. and A.J. Pittard. (1997). A topological model for the general aromatic amino acid permease, AroP, of Escherichia coli. J. Bacteriol. 179: 3317-3323. 9150230
Cosgriff, A.J., G. Brasier, J. Pi, C. Dogovski, J.P. Sarsero, and A.J. Pittard. (2000). The study of AroP-PheP chimeric proteins and identification of a residue involved in tryptophan transport. J. Bacteriol. 182: 2207-2217. 10735864
Das, S., D.R. Gardner, M. Neyaz, A.B. Charleston, 3rd, D. Cook, and R. Creamer. (2023). Silencing of the Transmembrane Transporter () Gene of the Fungus Results in a Reduction of Mycotoxin Transport. J Fungi (Basel) 9:. 36983538
De Biase, D. and E. Pennacchietti. (2012). Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol. Microbiol. 86: 770-786. 22995042
den Hengst, C.D., M. Groeneveld, O.P. Kuipers, and J. Kok. (2006). Identification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA). J. Bacteriol. 188: 3280-3289. 16621821
Deutschbauer, A., M.N. Price, K.M. Wetmore, W. Shao, J.K. Baumohl, Z. Xu, M. Nguyen, R. Tamse, R.W. Davis, and A.P. Arkin. (2011). Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet 7: e1002385. 22125499
Diallinas, G. (2017). Transceptors as a functional link of transporters and receptors. Microb Cell 4: 69-73. 28357392
Didion, T., B. Regenberg, M.U. Jørgensen, M.C. Kielland-Brandt, and H.A. Andersen. (1998). The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol. Microbiol. 27: 643-650. 9489675
Dogovski, C., J. Pi, and A.J. Pittard. (2003). Putative interhelical interactions within the PheP protein revealed by second-site suppressor analysis. J. Bacteriol. 185: 6225-6232. 14563856
Ekblad, B., J. Nissen-Meyer, and T. Kristensen. (2017). Whole-genome sequencing of mutants with increased resistance against the two-peptide bacteriocin plantaricin JK reveals a putative receptor and potential docking site. PLoS One 12: e0185279. 28931059
Fang, Y., H. Jayaram, T. Shane, L. Kolmakova-Partensky, F. Wu, C. Williams, Y. Xiong, and C. Miller. (2009). Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460: 1040-1043. 19578361
Fang, Y., L. Kolmakova-Partensky, and C. Miller. (2007). A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. J. Biol. Chem. 282: 176-182. 17099215
Fantone, S., F. Piani, F. Olivieri, M.R. Rippo, A. Sirico, N. Di Simone, D. Marzioni, and G. Tossetta. (2024). Role of SLC7A11/xCT in Ovarian Cancer. Int J Mol Sci 25:. 38203758
Farcasanu, I.C., M. Mizunuma, D. Hirata, and T. Miyakawa. (1998). Involvement of histidine permease (Hip1p) in manganese transport in Saccharomyces cerevisiae. Mol. Gen. Genet. 259: 541-548. 9790586
Fernández, E., D. Torrents, A. Zorzano, M. Palacín, and J. Chillaron. (2005). Identification and functional characterization of a novel low affinity aromatic-preferring amino acid transporter (arpAT). One of the few proteins silenced during primate evolution. J. Biol. Chem. 280: 19364-19372. 15757906
Fernández-Murray, J.P., M.H. Ngo, and C.R. McMaster. (2013). Choline transport activity regulates phosphatidylcholine synthesis through choline transporter Hnm1 stability. J. Biol. Chem. 288: 36106-36115. 24187140
Ferson, A.E., L.V. Wray, Jr, and S.H. Fisher. (1996). Expression of the Bacillus subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability. Mol. Microbiol. 22: 693-701. 8951816
Fischer, W.-N., B. André, D. Rentsch, S. Krolkiewics, M. Tegeder, K. Breitkreuz, and W.B. Frommer. (1998). Amino acid transport in plants. Trends Plant Sci. 3: 188-195.
Frommer, W.B., S. Hummel, M. Unseld, and O. Ninnemann. (1995). Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis. Proc. Natl. Acad. Sci. USA 92: 12036-12040. 8618839
Fujita M. and Shinozaki K. (2014). Identification of polyamine transporters in plants: paraquat transport provides crucial clues. Plant Cell Physiol. 55(5):855-61. 24590488
Fukasawa, Y., H. Segawa, J.Y. Kim, A. Chairoungdua, D.K. Kim, H. Matsuo, S.H. Cha, H. Endou, and Y. Kanai. (2000). Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. J. Biol. Chem. 275: 9690-9698. 10734121
Gao, X., F. Lu, L. Zhou, S. Dang, L. Sun, X. Li, J. Wang, and Y. Shi. (2009). Structure and mechanism of an amino acid antiporter. Science 324: 1565-1568. 19478139
Gasol, E., M. Jiménez-Vidal, J. Chillarón, A. Zorzano, and M. Palacín. (2004). Membrane topology of system xc- light subunit reveals a re-entrant loop with substrate-restricted accessibility. J. Biol. Chem. 279: 31228-31236. 15151999
Gong, S., H. Richard, and J.W. Foster. (2003). YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J. Bacteriol. 185: 4402-4409. 12867448
Guo, L.Y., S.L. Zheng, J. Li, Q. Zhu, W.H. Duan, Y. Zhang, Y.T. Zhu, and M. Hu. (2019). Phenotypic variability of SLC7A14 mutations in patients with inherited retinal dystrophy. Ophthalmic Genet 40: 118-123. 30924391
Habermeier, A., S. Wolf, U. Martiné, P. Gräf, and E.I. Closs. (2003). Two amino acid residues determine the low substrate affinity of human cationic amino acid transporter-2A. J. Biol. Chem. 278: 19492-19499. 12637504
Hagiwara, K., S. Nagamori, Y.M. Umemura, R. Ohgaki, H. Tanaka, D. Murata, S. Nakagomi, K.H. Nomura, E. Kage-Nakadai, S. Mitani, K. Nomura, and Y. Kanai. (2012). NRFL-1, the C. elegans NHERF Orthologue, Interacts with Amino Acid Transporter 6 (AAT-6) for Age-Dependent Maintenance of AAT-6 on the Membrane. PLoS One 7: e43050. 22916205
Hammes, U.Z., E. Nielsen, L.A. Honaas, C.G. Taylor, and D.P. Schachtman. (2006). AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. The Plant Journal 48: 414-426. 17052324
Han, Y., L. Fu, Y. Kong, C. Jiang, L. Huang, and H. Zhang. (2024). STEAP3 Affects Ovarian Cancer Progression by Regulating Ferroptosis through the p53/SLC7A11 Pathway. Mediators Inflamm 2024: 4048527. 38440354
Hasegawa, M., H. Takahashi, H. Rajabi, M. Alam, Y. Suzuki, L. Yin, A. Tagde, T. Maeda, M. Hiraki, V.P. Sukhatme, and D. Kufe. (2016). Functional interactions of the cystine/glutamate antiporter, CD44V and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget. [Epub: Ahead of Print] 26930718
Hasne, M.P. and B. Ullman. (2005). Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J. Biol. Chem. 280: 15188-15194. 15632173
Hatori, Y., A. Hirata, C. Toyoshima, D. Lewis, R. Pilankatta, and G. Inesi. (2008). Intermediate phosphorylation reactions in the mechanism of ATP utilization by the copper ATPase (CopA) of Thermotoga maritima. J. Biol. Chem. 283: 22541-22549. 18562314
Hatori, Y., D. Lewis, C. Toyoshima, and G. Inesi. (2009). Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants. Biochemistry 48: 4871-4880. 19364131
Hatori, Y., E. Majima, T. Tsuda, and C. Toyoshima. (2007). Domain organization and movements in heavy metal ion pumps: papain digestion of CopA, a Cu+-transporting ATPase. J. Biol. Chem. 282: 25213-25221. 17616523
Hinz KM., Meyer K., Kinne A., Schulein R., Kohrle J. and Krause G. (2015). Structural insights into thyroid hormone transport mechanisms of the L-type amino acid transporter 2. Mol Endocrinol. 29(6):933-42. 25945809
Honoré, N. and S.T. Cole. (1990). Nucleotide sequence of the aroP gene encoding the general aromatic amino acid transport protein of Escherichia coli K-12: homology with yeast transport proteins. Nucleic Acids Res 18: 653. 2408019
Hu, L.A. and S.C. King. (1998a). Functional significance of the "signature cysteine" in helix 8 of the Escherichia coli 4-aminobutyrate transporter from the amine-polyamine-choline superfamily. J. Biol. Chem. 273: 20162-20167. 9685361
Hu, L.A. and S.C. King. (1998b). Functional sensitivity of polar surfaces on transmembrane helix 8 and cytoplasmic loop 8-9 of the Escherichia coli GABA (4-aminobutyrate) transporter encoded by gabP: mutagenic analysis of a consensus amphipathic region found in transporters from bacteria to mammals. Biochem. J. 330: 771-776. 9480889
Hu, L.A. and S.C. King. (1998c). Membrane topology of the Escherichia coli γ-aminobutyrate transporter: implications on the topology and mechanism of prokaryotic and eukaryotic transporters from the APC superfamily. Biochem. J. 336: 69-76. 9806886
Hu, W.S., Y.H. Lin, and C.C. Shih. (2007). A proteomic approach to study Salmonella enterica serovar Typhimurium putative transporter YjeH associated with ceftriaxone resistance. Biochem. Biophys. Res. Commun. 361: 694-699. 17669360
Huang, R., H. Wang, J. Hong, J. Wu, O. Huang, J. He, W. Chen, Y. Li, X. Chen, K. Shen, and Z. Wang. (2023). Targeting glutamine metabolic reprogramming of SLC7A5 enhances the efficacy of anti-PD-1 in triple-negative breast cancer. Front Immunol 14: 1251643. 37731509
Hutchinson, K. and A. Schlessinger. (2024). Comprehensive Characterization of LAT1 Cholesterol-Binding Sites. J Chem Theory Comput 20: 3349-3358. 38597304
Hutchinson, K., D.B. Silva, J. Bohlke, C. Clausen, A.A. Thomas, M. Bonomi, and A. Schlessinger. (2022). Describing inhibitor specificity for the amino acid transporter LAT1 from metainference simulations. Biophys. J. [Epub: Ahead of Print] 36369754
Igarashi, K. and K. Kashiwagi. (1996). Polyamine transport inEscherichia coli. Amino Acids 10: 83-97. 24178434
Igarashi, K. and K. Kashiwagi. (2010). Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol. Biochem 48: 506-512. 20159658
Isnard, A.D., D. Thomas, and Y. Surdin-Kerjan. (1996). The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases. J. Mol. Biol. 262: 473-484. 8893857
Ito, K., and Groudine M. (1997). A New Member of the Cationic Amino Acid Transporter Family Is Preferentially Expressed in Adult Mouse Brain. J. Biol. Chem. 272: 26780-26786. 9334265
Iyer, R., C. Williams, and C. Miller. (2003). Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J. Bacteriol. 185: 6556-6561. 14594828
Jack, D.L., I.T. Paulsen, and M.H. Saier, Jr. (2000). The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146: 1797-1814. 10931886
Jaenecke, I., J.P. Boissel, M. Lemke, J. Rupp, B. Gasnier, and E.I. Closs. (2012). A chimera carrying the functional domain of the orphan protein SLC7A14 in the backbone of SLC7A2 mediates trans-stimulated arginine transport. J. Biol. Chem. 287: 30853-30860. 22787143
Jennings, M.P., J.K. Anderson, and I.R. Beacham. (1995). Cloning and molecular analysis of the Salmonella enterica ansP gene, encoding an L-asparagine permease. Microbiology 141(Pt1): 141-146. 7894705
Ji, X., X. Yang, N. Wang, M. Kang, Y. Wang, L. Rong, Y. Fang, and Y. Xue. (2018). Function of SLC7A7 in T-Cell Acute Lymphoblastic Leukemia. Cell Physiol Biochem 48: 731-740. 30025393
Jin, J., C. Kim, Q. Xia, T.M. Gould, W. Cao, H. Zhang, X. Li, D. Weiskopf, A. Grifoni, A. Sette, C.M. Weyand, and J.J. Goronzy. (2021). Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals. Sci Immunol 6:. 34145066
Johnson, D.A., S.G. Tetu, K. Phillippy, J. Chen, Q. Ren, and I.T. Paulsen. (2008). High-throughput phenotypic characterization of Pseudomonas aeruginosa membrane transport genes. PLoS Genet 4: e1000211. 18833300
Johnson, S.S., P.K. Hanson, R. Manoharlal, S.E. Brice, L.A. Cowart, and W.S. Moye-Rowley. (2010). Regulation of Yeast Nutrient Permease Endocytosis by ATP-binding Cassette Transporters and a Seven-transmembrane Protein, RSB1. J. Biol. Chem. 285: 35792-35802. 20826817
Kahlhofer, J. and D. Teis. (2022). The human LAT1-4F2hc (SLC7A5-SLC3A2) transporter complex: Physiological and pathophysiological implications. Basic Clin Pharmacol Toxicol. [Epub: Ahead of Print] 36460306
Kaleeba, J.A. and E.A. Berger. (2006). Kaposi''s sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science 311: 1921-1924. 16574866
Kalli, S., C. Vallieres, J. Violet, J.W. Sanders, J. Chapman, J.P. Vincken, S.V. Avery, and C. Araya-Cloutier. (2023). Cellular Responses and Targets in Food Spoilage Yeasts Exposed to Antifungal Prenylated Isoflavonoids. Microbiol Spectr e0132723. [Epub: Ahead of Print] 37428107
Kalwan, G., P. Priyadarshini, K. Kumar, Y.K. Yadava, S. Yadav, D. Kohli, S.S. Gill, K. Gaikwad, V. Hegde, and P.K. Jain. (2023). Genome wide identification and characterization of the amino acid transporter (AAT) genes regulating seed protein content in chickpea (Cicer arietinum L.). Int J Biol Macromol 252: 126324. [Epub: Ahead of Print] 37591427
Kanai, Y., Y. Fukasawa, S.H. Cha, H. Segawa, A. Chairoungdua, D.K. Kim, H. Matsuo, J.Y. Kim, K. Miyamoto, E. Takeda, and H. Endou. (2000). Transport properties of a system y+L neutral and basic amino acid transporter. J. Biol. Chem. 275: 20787-20793. 10777485
Kanda, N. and F. Abe. (2013). Structural and functional implications of the yeast high-affinity tryptophan permease Tat2. Biochemistry 52: 4296-4307. 23768406
Kaper, T., L.L. Looger, H. Takanaga, M. Platten, L. Steinman, and W.B. Frommer. (2007). Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol. 5: e257. 17896864
Kashiwagi, K. and K. Igarashi. (2011). Identification and assays of polyamine transport systems in Escherichia coli and Saccharomyces cerevisiae. Methods Mol Biol 720: 295-308. 21318881
Kashiwagi, K., S. Shibuya, H. Tomitori, A. Kuraishi, and K. Igaragshi. (1997). Excretion and uptake of putrescine by the PotE protein in Escherichia coli. J. Biol. Chem. 272: 6318-6323. 9045651
Kaur, J., E. Olkhova, V.N. Malviya, E. Grell, and H. Michel. (2014). A L-lysine transporter of high stereoselectivity of the amino acid-polyamine-organocation (APC) superfamily: production, functional characterization, and structure modeling. J. Biol. Chem. 289: 1377-1387. 24257746
Keriel, A., E. Botella, S. Estrach, G. Bragagnolo, A.C. Vergunst, C.C. Feral, and D. O'Callaghan. (2015). Brucella Intracellular Life Relies on the Transmembrane Protein CD98 Heavy Chain. J Infect Dis 211: 1769-1778. 25505297
Khavinson, V.K., N.S. Linkova, A.I. Rudskoy, and M.G. Petukhov. (2023). Feasibility of Transport of 26 Biologically Active Ultrashort Peptides via LAT and PEPT Family Transporters. Biomolecules 13:. 36979488
Khozov, A.A., D.M. Bubnov, E.D. Plisov, T.V. Vybornaya, T.V. Yuzbashev, G. Agrimi, E. Messina, A.A. Stepanova, M.D. Kudina, N.V. Alekseeva, A.I. Netrusov, and S.P. Sineoky. (2023). A study on L-threonine and L-serine uptake in K-12. Front Microbiol 14: 1151716. 37025642
Kinne, A., M. Wittner, E.K. Wirth, K.M. Hinz, R. Schülein, J. Köhrle, and G. Krause. (2015). Involvement of the L-Type Amino Acid Transporter Lat2 in the Transport of 3,3''-Diiodothyronine across the Plasma Membrane. Eur Thyroid J 4: 42-50. 26601072
Kinne, A., R. Schülein, and G. Krause. (2011). Primary and secondary thyroid hormone transporters. Thyroid Res 4Suppl1: S7. 21835054
Kitajima, T., Y. Chiba, and Y. Jigami. (2010). Mutation of high-affinity methionine permease contributes to selenomethionyl protein production in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 76: 6351-6359. 20693451
Knight, L.J., R.M. Martis, P.J. Donaldson, M.L. Acosta, and J.C. Lim. (2023). Changes in glutamate and glutamine distributions in the retinas of cystine/glutamate antiporter knockout mice. Mol Vis 29: 274-288. 38222448
Kowalczyk, L., M. Ratera, A. Paladino, P. Bartoccioni, E. Errasti-Murugarren, E. Valencia, G. Portella, S. Bial, A. Zorzano, I. Fita, M. Orozco, X. Carpena, J.L. Vázquez-Ibar, and M. Palacín. (2011). Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc. Natl. Acad. Sci. USA 108: 3935-3940. 21368142
Kraidlova, L., G. Van Zeebroeck, P. Van Dijck, and H. Sychrová. (2011). The Candida albicans GAP Gene Family Encodes Permeases Involved in General and Specific Amino Acid Uptake and Sensing. Eukaryot. Cell. 10: 1219-1229. 21764911
Krammer, E.M., K. Ghaddar, B. André, and M. Prévost. (2016). Unveiling the Mechanism of Arginine Transport through AdiC with Molecular Dynamics Simulations: The Guiding Role of Aromatic Residues. PLoS One 11: e0160219. 27482712
Krause, G. and K.M. Hinz. (2017). Thyroid hormone transport across L-type amino acid transporters: What can molecular modelling tell us? Mol. Cell Endocrinol. [Epub: Ahead of Print] 28341457
Krause, G. and K.M. Hinz. (2019). Molecular Mechanisms of Thyroid Hormone Transport by l-Type Amino Acid Transporter. Exp Clin Endocrinol Diabetes. [Epub: Ahead of Print] 31739345
Krautz-Peterson, G., S. Camargo, K. Huggel, F. Verrey, C.B. Shoemaker, and P.J. Skelly. (2007). Amino acid transport in schistosomes: Characterization of the permease heavy chain SPRM1hc. J. Biol. Chem. 282: 21767-21775. 17545149
Kurihara, S., S. Oda, K. Kato, H.G. Kim, T. Koyanagi, H. Kumagai, and H. Suzuki. (2005). A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J. Biol. Chem. 280: 4602-4608. 15590624
Lee, J. and J.L. Roh. (2022). SLC7A11 as a Gateway of Metabolic Perturbation and Ferroptosis Vulnerability in Cancer. Antioxidants (Basel) 11:. 36552652
Lee, Y., P. Wiriyasermkul, C. Jin, L. Quan, R. Ohgaki, S. Okuda, T. Kusakizako, T. Nishizawa, K. Oda, R. Ishitani, T. Yokoyama, T. Nakane, M. Shirouzu, H. Endou, S. Nagamori, Y. Kanai, and O. Nureki. (2019). Cryo-EM structure of the human L-type amino acid transporter 1 in complex with glycoprotein CD98hc. Nat Struct Mol Biol 26: 510-517. 31160781
Li, S. and A.R. Whorton. (2005). Identification of stereoselective transporters for S-nitroso-L-cysteine. Role of LAT1 and LAT2 in biological activity of S-nitrosothiols. J. Biol. Chem. 280: 20102-20110. 15769744
Li, S. and A.R. Whorton. (2007). Functional characterization of two S-nitroso-L-cysteine transporters, which mediate movement of NO equivalents into vascular cells. Am. J. Physiol. Cell Physiol. 292: C1263-1271. 17092994
Li, Z. and M. Brendel. (1993). Co-regulation with genes of phospholipid biosynthesis of the CTR/HNM1-encoded choline/nitrogen mustard permease in Saccharomyces cerevisiae. Mol. Gen. Genet. 241: 680-684. 8264542
Liao, M.K., S. Gort, and S. Maloy. (1997). A cryptic proline permease in Salmonella typhimurium. Microbiology 143(Pt9): 2903-2911. 9308174
Licht, J.A., S.P. Berry, M.A. Gutierrez, and R. Gaudet. (2024). They all rock: A systematic comparison of conformational movements in LeuT-fold transporters. bioRxiv. 38352416
Liu Q., Liang Y., Zhang Y., Shang X., Liu S., Wen J. and Wen T. (2015). YjeH Is a Novel Exporter of l-Methionine and Branched-Chain Amino Acids in Escherichia coli. Appl Environ Microbiol. 81(22):7753-66. 26319875
Lorca, G., B. Winnen, and M.H. Saier, Jr. (2003). Identification of the L-aspartate transporter in Bacillus subtilis. J. Bacteriol. 185: 3218-3222. 12730183
Ma, D., P. Lu, C. Yan, C. Fan, P. Yin, J. Wang, and Y. Shi. (2012). Structure and mechanism of a glutamate-GABA antiporter. Nature 483: 632-636. 22407317
Mastroberardino, L., B. Spindler, R. Pfeiffer, P.J. Skelly, J. Loffing, C.B. Shoemaker, and F. Verrey. (1998). Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395: 288-291. 9751058
Matìjèková, A., and H. Sychrová. (1997). Biogenesis of Candida albicans Can1 permease expressed in Saccharomyces cerevisiae. FEBS Letters 408: 89-93. 9180275
Matsuo, H., Y. Kanai, J.Y. Kim, A. Chairoungdua, D.K. Kim, J. Inatomi, Y. Shigeta, H. Ishimine, S. Chaekuntode, K. Tachampa, H.W. Choi, E. Babu, J. Fukuda, and H. Endou. (2002). Identification of a novel Na+-independent acidic amino acid transporter with structural similarity to the member of a heterodimeric amino acid transporter family associated with unknown heavy chains. J. Biol. Chem. 277: 21017-21026. 11907033
Meier, C., Z. Ristic, S. Klauser, and F. Verrey. (2002). Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J. 21: 580-589. 11847106
Merhi, A., N. Gérard, E. Lauwers, M. Prévost, and B. André. (2011). Systematic mutational analysis of the intracellular regions of yeast Gap1 permease. PLoS One 6: e18457. 21526172
Meury, M., M. Costa, D. Harder, M. Stauffer, J.M. Jeckelmann, B. Brühlmann, A. Rosell, H. Ilgü, K. Kovar, M. Palacín, and D. Fotiadis. (2014). Detergent-Induced Stabilization and Improved 3D Map of the Human Heteromeric Amino Acid Transporter 4F2hc-LAT2. PLoS One 9: e109882. 25299125
Mochizuki T., Kimata Y., Uemura S. and Abe F. (2015). Retention of chimeric Tat2-Gap1 permease in the endoplasmic reticulum induces unfolded protein response in Saccharomyces cerevisiae. FEMS Yeast Res. 15(5). 26071436
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Nagane, M., E. Kanai, Y. Shibata, T. Shimizu, C. Yoshioka, T. Maruo, and T. Yamashita. (2018). Sulfasalazine, an inhibitor of the cystine-glutamate antiporter, reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanoma. PLoS One 13: e0195151. 29649284
Neef, J., V.F. Andisi, K.S. Kim, O.P. Kuipers, and J.J. Bijlsma. (2011). Deletion of a cation transporter promotes lysis in Streptococcus pneumoniae. Infect. Immun. 79: 2314-2323. 21422174
Nele Bourgeois, M.A., S.L. Van Herck, P. Vancamp, J. Delbaere, C. Zevenbergen, S. Kersseboom, V.M. Darras, and T.J. Visser. (2016). CHARACTERIZATION OF CHICKEN THYROID HORMONE TRANSPORTERS. Endocrinology en20152025. [Epub: Ahead of Print] 27070099
Newell JL., Keyari CM., McDaniel SW., Diaz PJ., Natale NR., Patel SA. and Bridges RJ. (2014). Novel di-aryl-substituted isoxazoles act as noncompetitive inhibitors of the system Xc(-) cystine/glutamate exchanger. Neurochem Int. 73:132-8. 24333322
Nie, J., Y. Ling, M. Jin, Z. Chen, W. Liu, W. Shen, T. Fang, J. Li, and Y. He. (2023). Butyrate enhances erastin-induced ferroptosis of osteosarcoma cells via regulating ATF3/SLC7A11 pathway. Eur J Pharmacol 957: 176009. 37619784
Noens, E.E. and J.S. Lolkema. (2015). Physiology and substrate specificity of two closely related amino acid transporters, SerP1 and SerP2, of Lactococcus lactis. J. Bacteriol. 197: 951-958. 25535271
Oda, K., Y. Lee, P. Wiriyasermkul, Y. Tanaka, M. Takemoto, K. Yamashita, S. Nagamori, T. Nishizawa, and O. Nureki. (2020). Consensus mutagenesis approach improves the thermal stability of system x transporter, xCT, and enables cryo-EM analyses. Protein. Sci. [Epub: Ahead of Print] 33016372
Ogbechi, J., H.L. Wright, S. Balint, L.M. Topping, Z. Kristina, Y.S. Huang, E. Pantazi, M. Swart, D. Windell, E. Marin, M.F. Wempe, H. Endou, A.M. Thomas, A. Filer, T.W. Stone, A.J. Clarke, M.L. Dustin, and R.O. Williams. (2023). LAT1 enables T cell activation under inflammatory conditions. J Autoimmun 138: 103031. [Epub: Ahead of Print] 37229811
Okita, K., Y. Hara, H. Okura, H. Hayashi, Y. Sasaki, S. Masuko, E. Kitadai, K. Masuko, S. Yoshimoto, N. Hayashi, R. Sugiura, Y. Endo, S. Okazaki, S. Arai, T. Yoshioka, T. Matsumoto, Y. Makino, H. Komiyama, K. Sakamoto, and T. Masuko. (2020). Anti-tumor effects of novel mAbs against cationic amino acid transporter 1 (CAT1) on human CRC with amplified CAT1 gene. Cancer Sci. [Epub: Ahead of Print] 33211385
Oppegård, C., M. Kjos, J.W. Veening, J. Nissen-Meyer, and T. Kristensen. (2016). A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK. Microbiologyopen. [Epub: Ahead of Print] 27150273
Panetti, S., N.J. McJannett, L. Fultang, S. Booth, L. Gneo, U. Scarpa, C. Smith, A. Vardon, L. Vettore, C. Whalley, Y. Pan, C. Varnai, H. Endou, J. Barlow, D.A. Tennant, A.D. Beggs, F.J. Mussai, and C. De Santo. (2022). Engineering amino acid uptake or catabolism promotes CAR-T cell adaption to the tumour environment. Blood Adv. [Epub: Ahead of Print] 36521029
Phalip, V., I. Kuhn, Y. Lemoine, and J.M. Jeltsch. (1999). Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake. Gene 232: 43-51. 10333520
Pi, J. and A.J. Pittard. (1996). Topology of the phenylalanine-specific permease of Escherichia coli. J. Bacteriol. 178: 2650-2655. 8626334
Pi, J., H. Chow, and A.J. Pittard. (2002). Study of second-site suppression in the pheP gene for the phenylalanine transporter of Escherichia coli. J. Bacteriol. 184: 5842-5847. 12374816
Pi, J., P.J. Wookey, and A.J. Pittard. (1993). Site-directed mutagenesis reveals the importance of conserved charged residues for the transport activity of the PheP permease of Escherichia coli. J. Bacteriol. 175: 7500-7504. 8226700
Pineda, M., E. Fernández, D. Torrents, R. Estévez, C. López, M. Camps, J. Lloberas, A. Zorzano, and M. Palacín. (1999). Identification of a membrane protein, LAT-2, that co-expresses with 4F2 heavy chain, and l-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J. Biol. Chem. 274: 19738-19744. 10391915
Poulsen, P., R.F. Gaber, and M.C. Kielland-Brandt. (2008). Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor. Mol. Membr. Biol. 25: 164-176. 18307103
Prager, G.W., C.C. Féral, C. Kim, J. Han, and M.H. Ginsberg. (2007). CD98hc (SLC3A2) interaction with the integrin beta subunit cytoplasmic domain mediates adhesive signaling. J. Biol. Chem. 282: 24477-24484. 17597067
Procaccini, C., S. Garavelli, F. Carbone, D. Di Silvestre, C. La Rocca, D. Greco, A. Colamatteo, M.T. Lepore, C. Russo, G. De Rosa, D. Faicchia, F. Prattichizzo, S. Grossi, P. Campomenosi, F. Buttari, P. Mauri, A. Uccelli, M. Salvetti, V. Brescia Morra, D. Vella, M. Galgani, M. Mottola, B. Zuccarelli, R. Lanzillo, G.T. Maniscalco, D. Centonze, P. de Candia, and G. Matarese. (2021). Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity. [Epub: Ahead of Print] 34004141
Pulvermacher, S.C., L.T. Stauffer, and G.V. Stauffer. (2009). Role of the sRNA GcvB in regulation of cycA in Escherichia coli. Microbiology 155: 106-114. 19118351
Rabinowitz, J., H.J. Sharifi, H. Martin, A. Marchese, M. Robek, B. Shi, A.A. Mongin, and C.M.C. de Noronha. (2021). xCT/SLC7A11 antiporter function inhibits HIV-1 infection. Virology 556: 149-160. 33631414
Rauschmeier M., Schuppel V., Tetsch L. and Jung K. (2014). New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in Escherichia coli. J Mol Biol. 426(1):215-29. 24056175
Reig, N., C. Del Rio, F. Casagrande, M. Ratera, J.L. Gelpi, D. Torrents, P.J. Henderson, H. Xie, S.A. Baldwin, A. Zorzano, D. Fotiadis, and M. Palacin. (2007). Functional and structural characterization of the first prokaryotic member of the L-amino acid transporter (LAT) family: A model for APC transporters. J. Biol. Chem. 282: 13270-13281. 17344220
Reizer, J., K. Finley, D. Kakuda, C.L. MacLeod, A. Reizer, and M.H. Saier, Jr. (1993). Mammalian integral membrane receptors are homologous to facilitators and antiporters of yeast, fungi, and eubacteria. Prot. Sci. 2: 20-30. 8382989
Reynolds, B., P. Roversi, R. Laynes, S. Kazi, C.A. Boyd, and D.C. Goberdhan. (2009). Drosophila expresses a CD98 transporter with an evolutionarily conserved structure and amino acid-transport properties. Biochem. J. 420: 363-372. 19335336
Richard, H. and J.W. Foster. (2004). Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J. Bacteriol. 186: 6032-6041. 15342572
Rodionov, D.A., A.G. Vitreschak, A.A. Mironov, and M.S. Gelfand. (2003). Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res. 31: 6748-6757. 14627808
Rodríguez-Banqueri, A., E. Errasti-Murugarren, P. Bartoccioni, L. Kowalczyk, A. Perálvarez-Marín, M. Palacín, and J.L. Vázquez-Ibar. (2016). Stabilization of a prokaryotic LAT transporter by random mutagenesis. J Gen Physiol. [Epub: Ahead of Print] 26976827
Rouillon, A., Y. Surdin-Kerjan, and D. Thomas (1999). Transport of Sulfonium compounds: characterization of the S-adneosylmethionine and S-methylmethionine permeases from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274: 28096-28105. 10497160
Ruiu, R., V. Rolih, E. Bolli, G. Barutello, F. Riccardo, E. Quaglino, I.F. Merighi, F. Pericle, G. Donofrio, F. Cavallo, and L. Conti. (2019). Fighting breast cancer stem cells through the immune-targeting of the xCT cystine-glutamate antiporter. Cancer Immunol Immunother 68: 131-141. 29947961
Saier, M.H., Jr. (2000). Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology 146: 1775-1795. 10931885
Sanders, J.W., K. Leenhouts, J. Burghoorn, J.R. Brands, G. Venema, and J. Kok. (1998). A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27: 299-310. 9484886
Sato, H., A. Shiiya, M. Kimata, K. Maebara, M. Tamba, Y. Sakakura, N. Makino, F. Sugiyama, K. Yagami, T. Moriguchi, S. Takahashi, and S. Bannai. (2005). Redox imbalance in cystine/glutamate transporter-deficient mice. J. Biol. Chem. 280: 37423-37429. 16144837
Sato, H., M. Tamba, T. Ishii, and S. Bannai. (1999). Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J. Biol. Chem. 274: 11455-11458. 10206947
Scalise, M., M. Galluccio, L. Console, L. Pochini, and C. Indiveri. (2018). The Human SLC7A5 (LAT1): The Intriguing Histidine/Large Neutral Amino Acid Transporter and Its Relevance to Human Health. Front Chem 6: 243. 29988369
Schweikhard, E.S. and C.M. Ziegler. (2012). Amino Acid secondary transporters: toward a common transport mechanism. Curr Top Membr 70: 1-28. 23177982
Segawa, H., Y. Fukasawa, K. Miyamoto, E. Takeda, H. Endou, and Y. Kanai. (1999). Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J. Biol. Chem. 274: 19745-19751. 10391916
Seth, A. and N.D. Connell. (2000). Amino acid transport and metabolism in mycobacteria: cloning, interruption, and characterization of an L-arginine/γ-aminobutyric acid permease in Mycobacterium bovis BCG. J. Bacteriol. 182: 919-927. 10648515
Shaffer, P.L., A. Goehring, A. Shankaranarayanan, and E. Gouaux. (2009). Structure and mechanism of a Na+-independent amino acid transporter. Science 325: 1010-1014. 19608859
Sharma, M. and C.R. Anirudh. (2019). In silico characterization of residues essential for substrate binding of human cystine transporter, xCT. J Mol Model 25: 336. 31705320
Shi, Y., H. Kim, C.A. Hamann, E.M. Rhea, J.M. Brunger, and E.S. Lippmann. (2022). Nuclear receptor ligand screening in an iPSC-derived in vitro blood-brain barrier model identifies new contributors to leptin transport. Fluids Barriers CNS 19: 77. 36131285
Simmons-Willis, T.A., A.S. Koh, T.W. Clarkson, and N. Ballatori. (2002). Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem. J. 367: 239-246. 12117417
Soksawatmaekhin, W., A. Kuraishi, K. Sakata, K. Kashiwagi, and K. Igarashi. (2004). Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol. Microbiol. 51: 1401-1412. 14982633
Soksawatmaekhin, W., T. Uemura, N. Fukiwake, K. Kashiwagi, and K. Igarashi. (2006). Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J. Biol. Chem. 281: 29213-29220. 16877381
Sophianopoulou, V. and G. Diallinas. (1995). Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol. Rev. 16: 53-75. 7888172
Sourbron, J., K. Jansen, D. Mei, T.B. Hammer, R.S. Møller, N.B. Gold, L. O''Grady, R. Guerrini, and L. Lagae. (2021). SLC7A3: In Silico Prediction of a Potential New Cause of Childhood Epilepsy. Neuropediatrics. [Epub: Ahead of Print] 34872132
Soysa R., Venselaar H., Poston J., Ullman B. and Hasne MP. (2013). Structural model of a putrescine-cadaverine permease from Trypanosoma cruzi predicts residues vital for transport and ligand binding. Biochem J. 452(3):423-32. 23535070
Sreedharan, S., O. Stephansson, H.B. Schiöth, and R. Fredriksson. (2011). Long evolutionary conservation and considerable tissue specificity of several atypical solute carrier transporters. Gene 478: 11-18. 21044875
Su, T.Z., M.R. Feng, and M.L. Weber. (2005). Mediation of highly concentrative uptake of pregabalin by L-type amino acid transport in Chinese hamster ovary and Caco-2 cells. J Pharmacol Exp Ther 313: 1406-1415. 15769862
Tachihara, K., T. Uemura, K. Kashiwagi, and K. Igarashi. (2005). Excretion of putrescine and spermidine by the protein encoded by YKL174c (TPO5) in Saccharomyces cerevisiae. J. Biol. Chem. 280: 12637-12642. 15668236
Tian, X., X. Meng, L. Wang, Y. Song, D. Zhang, Y. Ji, X. Li, and C. Dong. (2015). Molecular cloning, mRNA expression and tissue distribution analysis of Slc7a11 gene in alpaca (Lama paco) skins associated with different coat colors. Gene 555: 88-94. 25455099
Tomitori, H., K. Kashiwagi, and K. Igarashi. (2012). Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli. Amino Acids 42: 733-740. 21796432
Trip, H., M.E. Evers, W.N. Konings, and A.J.M. Driessen. (2002). Cloning and characterization of an aromatic amino acid and leucine permease of Penicillium chrysogenum. Biochim. Biophys. Acta 1565: 73-80. 12225854
Trip, H., N.L. Mulder, and J.S. Lolkema. (2013). Cloning, expression, and functional characterization of secondary amino acid transporters of Lactococcus lactis. J. Bacteriol. 195: 340-350. 23144255
Uemura, T., K. Kashiwagi, and K. Igarashi. (2007). Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J. Biol. Chem. 282: 7733-7741. 17218313
Van''t Klooster, J.S., F. Bianchi, R.B. Doorn, M. Lorenzon, J.H. Lusseveld, C.M. Punter, and B. Poolman. (2020). Extracellular loops matter - subcellular location and function of the lysine transporter Lyp1 from Saccharomyces cerevisiae. FEBS J. [Epub: Ahead of Print] 32096906
Veljkovic, E., A. Bacconi, A. Stetak, A. Hajnal, S. Stasiuk, P.J. Skelly, I. Forster, C.B. Shoemaker, and F. Verrey. (2004). Aromatic amino acid transporter AAT-9 of Caenorhabditis elegans localizes to neurons and muscle cells. J. Biol. Chem. 279: 49268-49273. 15364921
Veljkovic, E., S. Stasiuk, P.J. Skelly, C.B. Shoemaker, and F. Verrey. (2004). Functional characterization of Caenorhabditis elegans heteromeric amino acid transporters. J. Biol. Chem. 279: 7655-7662. 14668347
Vit, O., P. Talacko, Z. Musil, I. Hartmann, K. Pacak, and J. Petrak. (2023). Identification of potential molecular targets for the treatment of cluster 1 human pheochromocytoma and paraganglioma via comprehensive proteomic characterization. Clin Proteomics 20: 39. 37749499
Vogl, C., C.M. Klein, A.F. Batke, M.E. Schweingruber, and J. Stolz. (2008). Characterization of Thi9, a novel thiamine (Vitamin B1) transporter from Schizosaccharomyces pombe. J. Biol. Chem. 283: 7379-7389. 18201975
Wang, J., A. Shanmugam, S. Markand, E. Zorrilla, V. Ganapathy, and S.B. Smith. (2015). Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system xc(-), the Na+-independent glutamate-cystine exchanger. Free Radic Biol Med 86: 25-36. 25920363
Wehrmann, A., S. Morakkabati, R. Krämer, H. Sahm, and L. Eggeling. (1995). Functional analysis of sequences adjacent to dapE of Corynebacterium glutamicum reveals the presence of aroP, which encodes the aromatic amino acid transporter. J. Bacteriol. 177: 5991-5993. 7592354
Wiame, E. and E. Van Schaftingen. (2004). Fructoselysine 3-epimerase, an enzyme involved in the metabolism of the unusual Amadori compound psicoselysine in Escherichia coli. Biochem. J. 378: 1047-1052. 14641112
Widhalm, J.R., M. Gutensohn, H. Yoo, F. Adebesin, Y. Qian, L. Guo, R. Jaini, J.H. Lynch, R.M. McCoy, J.T. Shreve, J. Thimmapuram, D. Rhodes, J.A. Morgan, and N. Dudareva. (2015). Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nat Commun 6: 8142. 26356302
Wipf, D., M. Benjdia, M. Tegeder, and W.B. Frommer. (2002). Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett. 528: 119-124. 12297290
Wipf, D., U. Ludewig, M. Tegeder, D. Rentsch, W. Koch, and W.B. Frommer. (2002). Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem. Sci. 27: 139-147. 11893511
Wong, F.H., J.S. Chen, V. Reddy, J.L. Day, M.A. Shlykov, S.T. Wakabayashi, and M.H. Saier, Jr. (2012). The amino acid-polyamine-organocation superfamily. J. Mol. Microbiol. Biotechnol. 22: 105-113. 22627175
Wu, D., T.N. Grund, S. Welsch, D.J. Mills, M. Michel, S. Safarian, and H. Michel. (2020). Structural basis for amino acid exchange by a human heteromeric amino acid transporter. Proc. Natl. Acad. Sci. USA 117: 21281-21287. 32817565
Wu, X., Y. Fang, Y. Gu, H. Shen, Y. Xu, T. Xu, R. Shi, D. Xu, J. Zhang, K. Leng, Y. Shu, and P. Ma. (2024). Fat mass and obesity-associated protein (FTO) mediated mA modification of circFAM192A promoted gastric cancer proliferation by suppressing SLC7A5 decay. Mol Biomed 5: 11. 38556586
Wunderlich, J. (2022). Updated List of Transport Proteins in. Front Cell Infect Microbiol 12: 926541. 35811673
Xiao, J., D. Wang, L. Wang, Y. Jiang, L. Xue, S. Sui, J. Wang, C. Guo, R. Wang, J. Wang, N. Li, H. Fan, and M. Lv. (2020). Increasing L-lysine production in Corynebacterium glutamicum by engineering amino acid transporters. Amino Acids 52: 1363-1374. 33021685
Yakubov, E., S. Schmid, A. Hammer, D. Chen, J.K. Dahlmanns, I. Mitrovic, L. Zurabashvili, N. Savaskan, H.H. Steiner, and M. Dahlmanns. (2023). Ferroptosis and PPAR-gamma in the limelight of brain tumors and edema. Front Oncol 13: 1176038. 37554158
Yan, R., Y. Li, Y. Shi, J. Zhou, J. Lei, J. Huang, and Q. Zhou. (2020). Cryo-EM structure of the human heteromeric amino acid transporter bAT-rBAT. Sci Adv 6: eaay6379. 32494597
Yan, Y., H. Teng, Q. Hang, L. Kondiparthi, G. Lei, A. Horbath, X. Liu, C. Mao, S. Wu, L. Zhuang, M. James You, M.V. Poyurovsky, L. Ma, K. Olszewski, and B. Gan. (2023). SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells. Nat Commun 14: 3673. 37339981
Yang J., Tan Q., Zhu W., Chen C., Liang X. and Pan L. (2014). Cloning and molecular characterization of cationic amino acid transporter y(+)LAT1 in grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem. 40(1):93-104. 23817987
You, S., X. Han, Y. Xu, and Q. Yao. (2023). Research progress on the role of cationic amino acid transporter (CAT) family members in malignant tumors and immune microenvironment. Amino Acids. [Epub: Ahead of Print] 37572157
Young, G.B., D.L. Jack, D.W. Smith, and M.H. Saier, Jr. (1999). The amino acid/auxin:proton symport permease family. Biochim. Biophys. Acta 1415: 306-322. 9889387
Zaprasis, A., T. Hoffmann, L. Stannek, K. Gunka, F.M. Commichau, and E. Bremer. (2014). The γ-Aminobutyrate Permease GabP Serves as the Third Proline Transporter of Bacillus subtilis. J. Bacteriol. 196: 515-526. 24142252
Zhang, B., Y. Jin, L. Zhang, H. Wang, and X. Wang. (2022). Pentamidine Ninety Years on: the Development and Applications of Pentamidine and its Analogs. Curr. Med. Chem. [Epub: Ahead of Print] 35289252
Zhang, W., H.A. Campbell, S.C. King, and W. Dowhan. (2005). Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the γ-aminobutyric acid permease (GabP) of Escherichia coli. J. Biol. Chem. 280: 26032-26038. 15890647
Zhang, X., X. Zheng, X. Ying, W. Xie, Y. Yin, and X. Wang. (2023). CEBPG suppresses ferroptosis through transcriptional control of SLC7A11 in ovarian cancer. J Transl Med 21: 334. 37210575
Zheng, S., S. Shuman, and B. Schwer. (2007). Sinefungin resistance of Saccharomyces cerevisiae arising from Sam3 mutations that inactivate the AdoMet transporter or from increased expression of AdoMet synthase plus mRNA cap guanine-N7 methyltransferase. Nucleic Acids Res. 35(20):6895-6903. 17932050
Zomot, E. and I. Bahar. (2011). Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter. J. Biol. Chem. 286: 19693-19701. 21487006