TCDB is operated by the Saier Lab Bioinformatics Group

2.A.30 The Cation-Chloride Cotransporter (CCC) Family

Members of the CCC family, found in animals, plants, fungi, archaea and bacteria, can catalyze NaCl/KCl symport, NaCl symport, or KCl symport depending on the system. The NaCl/KCl symporters are specifically inhibited by bumetanide while the NaCl symporters are specifically inhibited by thiazide. Most characterized CCC family proteins are from higher animals, but several have been identified in greeen algae, mosses, grasses, dicots and bacteria (Henderson et al. 2018). Homologues have been sequenced from Caenorhabditis elegans (worm), Saccharomyces cerevisiae (yeast) and Synechococcus sp. (blue green bacterium).  These proteins show sequence similarity to members of the APC family (TC #2.A.3). CCC family proteins are usually large (between 1000 and 1200 amino acyl residues), and possess 12 putative transmembrane spanners flanked by large N-terminal and C-terminal hydrophilic domains. Henderson et al. 2018 have provided evidence for two phylogenetic clades which they called CCC1 and CCC2. CCC family members play critical roles in regulating cell volume, controlling ion absorption and secretion across epithelia, and maintaining intracellular chloride homeostasis. These transporters are primary targets for some of the most commonly prescribed drugs (Chew et al. 2019). CCCs may influence the polarity of GABA signalling in mouse hippocampal parvalbumin interneurons (Otsu et al. 2020). Acute intravenous NaCl and volume expansion reduces Sodium-Chloride Cotransporter abundance and phosphorylation in urinary extracellular vesicles (Wu et al. 2022).

Two splice variants of NKCC2 are identical except for a 23 aa membrane domain. They have different affinities for Na+, K+ and Cl-. This segment (residues 216-233 in NKCC2) were examined for ion selectivity. Residue 216 affects K+ binding while residue 220 only affects Na+ binding. These two sites are presumed to be adjacent to each other (Gagnon et al., 2005). Cation-chloride cotransporters (CCCs) play roles in setting the Cl- driving force in nerves (Düsterwald et al. 2018).

Each of the major types of CCC family members in mammals may differ in substrates transported. For example, of the four currently recognized KCl transporters, KCC1 and KCC4 both recognize KCl with similar affinities, but KCC1 exhibits anion selectivity: Cl- > SCN- = Br- > PO4-3 > I-, while KCl4 exhibits anion selectivity: Cl- > Br- > PO4-3 = I- > SCN-. Both are activated by cell swelling under hypotonic conditions (Mercado et al., 2000). These proteins may cotransport water (H2O) (Mollajew et al., 2010).

One member of the CCC family, the thiazide-sensitive NaCl cotransporter (NCC) of humans is involved in 5% of the filtered load of NaCl in the kidney. Mutations in NCC cause the recessive Gitelman syndrome. NCC is a dimer in the membrane (de Jong et al., 2003). It is regulated by RasGRP1 which mediates the PE induced suppression of NCC activity through the stimulation of the MAPK pathway (Ko et al., 2007). Potassium-chloride cotransporters KCC1 to KCC4 mediate the coupled export of potassium and chloride across the plasma membrane and play important roles in cell volume regulation, auditory system function, and gamma-aminobutyric acid (GABA) and glycine-mediated inhibitory neurotransmission. Xie et al. 2020 presented 2.9- to 3.6-Å resolution structures of full-length human KCC2, KCC3, and KCC4. All three KCCs adopt a similar overall architecture, a domain-swap dimeric assembly, and an inward-facing conformation. One unexpected N-terminal peptide binds at the cytosolic facing cavity and locks KCC2 and KCC4 in an autoinhibition state. The C-terminal domain (CTD) directly interacts with the N-terminal inhibitory peptide, and the relative motions between the CTD and the transmembrane domain suggest that CTD regulates KCCs' activities by adjusting the autoinhibitory effect. CCCs share a conserved structural scaffold that consists of a transmembrane transport domain followed by a cytoplasmic regulatory domain (Xie et al. 2020). 

Warmuth et al. (2009) determined the x-ray structure of the C-terminal domain of a CCC from the archaeon Mehanosarcina acetivorans. It shows a novel fold of a regulatory domain, distantly related to universal stress proteins. The protein forms dimers in solution, consistent with the proposed dimeric organization of eukaryotic CCC transporters. 

Cation-chloride cotransporters (CCCs) mediate the coupled, electroneutral symport of cations with chloride across the plasma membrane and are vital for cell volume regulation, salt reabsorption in the kidney, and γ-aminobutyric acid (GABA)-mediated modulation in neurons. Liu et al. 2019 presented cryo-EM structures of human potassium-chloride cotransporter KCC1 in potassium chloride or sodium chloride at 2.9- to 3.5-Å resolution. KCC1 exists as a dimer, with both extracellular and transmembrane domains involved in dimerization. The structural and functional analyses, along with computational studies, revealed one potassium site and two chloride sites in KCC1, which are all required for the ion transport activity. KCC1 adopts an inward-facing conformation, with the extracellular gate occluded. The KCC1 structures allowed the authors to model a potential ion transport mechanism in KCCs and provide a blueprint for drug design (Liu et al. 2019).

The generalized transport reaction for CCC family symporters is:

{Na+ + K+ + 2Cl-} (out) ⇌ {Na+ + K+ + 2Cl-} (in).

That for the NaCl and KCl symporters is:

{Na+ or K+ + Cl-} (out) ⇌ {Na+ or K+ + Cl-} (in).

This family belongs to the: APC Superfamily.

References associated with 2.A.30 family:

Accogli, A., Y.N. Park, G.M. Lenk, M. Severino, M. Scala, J. Denecke, M. Hempel, D. Lessel, F. Kortüm, V. Salpietro, P. de Marco, S. Guerrisi, A. Torella, V. Nigro, M. Srour, E. Turro, V. Labarque, K. Freson, G. Piatelli, V. Capra, J.O. Kitzman, and M.H. Meisler. (2024). Biallelic loss-of-function variants of SLC12A9 cause lysosome dysfunction and a syndromic neurodevelopmental disorder. Genet Med 101097. [Epub: Ahead of Print] 38334070
Adachi, M., Y. Asakura, Y. Sato, T. Tajima, T. Nakajima, T. Yamamoto, and K. Fujieda. (2007). Novel SLC12A1 (NKCC2) mutations in two families with Bartter syndrome type 1. Endocr J 54: 1003-1007. 17998760
Al Awabdh, S., F. Donneger, M. Goutierre, M. Séveno, O. Vigy, P. Weinzettl, M. Russeau, I. Moutkine, S. Lévi, P. Marin, and J.C. Poncer. (2021). Gephyrin interacts with the K-Cl co-transporter KCC2 to regulate its surface expression and function in cortical neurons. J. Neurosci. [Epub: Ahead of Print] 34810232
Amadeo, A., A. Coatti, P. Aracri, M. Ascagni, D. Iannantuoni, D. Modena, L. Carraresi, S. Brusco, S. Meneghini, A. Arcangeli, M.E. Pasini, and A. Becchetti. (2018). Postnatal Changes in K/Cl Cotransporter-2 Expression in the Forebrain of Mice Bearing a Mutant Nicotinic Subunit Linked to Sleep-Related Epilepsy. Neuroscience 386: 91-107. 29949744
Berenbrink, M., S. Völkel, P. Koldkjaer, N. Heisler, and M. Nikinmaa. (2006). Two different oxygen sensors regulate oxygen-sensitive K+ transport in crucian carp red blood cells. J. Physiol. 575: 37-48. 16763000
Bi, Y., M.Y. Kuang, and M.L. Li. (2023). Novel heterozygous mutations of SLC12A3 gene in a Chinese pedigree with Gitelman syndrome: A care-compliant case report. Medicine (Baltimore) 102: e34967. 37657006
Boettger, T., M.B. Rust, H. Maier, T. Seidenbecher, M. Schweizer, D.J. Keating, J. Faulhaber, H. Ehmke, C. Pfeffer, O. Scheel, B. Lemcke, J. Horst, R. Leuwer, H.C. Pape, H. Völkl, C.A. Hübner, and T.J. Jentsch. (2003). Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. EMBO. J. 22: 5422-5434. 14532115
Chamma, I., Q. Chevy, J.C. Poncer, and S. Lévi. (2012). Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission. Front Cell Neurosci 6: 5. 22363264
Chew, T.A., B.J. Orlando, J. Zhang, N.R. Latorraca, A. Wang, S.A. Hollingsworth, D.H. Chen, R.O. Dror, M. Liao, and L. Feng. (2019). Structure and mechanism of the cation-chloride cotransporter NKCC1. Nature 572: 488-492. 31367042
Correia, A.L., M.G. Marques, and R. Alves. (2022). Gitelman syndrome - A new mutation in the SLC12A3 gene. Nefrologia (Engl Ed) 42: 490-492. 36460433
Cruz-Rangel, S., Z. Melo, N. Vázquez, P. Meade, N.A. Bobadilla, H. Pasantes-Morales, G. Gamba, and A. Mercado. (2011). Similar effects of all WNK3 variants on SLC12 cotransporters. Am. J. Physiol. Cell Physiol. 301: C601-608. 21613606
Cunha, T.D.S. and I.P. Heilberg. (2018). Bartter syndrome: causes, diagnosis, and treatment. Int J Nephrol Renovasc Dis 11: 291-301. 30519073
Döding, A., A.M. Hartmann, T. Beyer, and H.G. Nothwang. (2012). KCC2 transport activity requires the highly conserved L₆₇₅ in the C-terminal β1 strand. Biochem. Biophys. Res. Commun. 420: 492-497. 22414695
de Jong, J.C., P.H.G.M. Willems, F.J.M. Mooren, L.P.W.J. van den Heuvel, N.V.A.M. Knoers, and R.J.M. Bindels. (2003). The structural unit of the thiazide-sensitive NaCl cotransporter is a homodimer. J. Biol. Chem. 278: 24302-24307. 12704198
Delpire, E. and J. Guo. (2020). Cryo-EM structures of NKCC1 and hKCC1: a new milestone in the physiology of cation-chloride cotransporters. Am. J. Physiol. Cell Physiol. 318: C225-C237. 31747317
Dube, F., A. Hinas, N. Delhomme, M. Åbrink, S. Svärd, and E. Tydén. (2023). Transcriptomics of ivermectin response in Caenorhabditis elegans: Integrating abamectin quantitative trait loci and comparison to the Ivermectin-exposed DA1316 strain. PLoS One 18: e0285262. 37141255
Düsterwald, K.M., C.B. Currin, R.J. Burman, C.J. Akerman, A.R. Kay, and J.V. Raimondo. (2018). Biophysical models reveal the relative importance of transporter proteins and impermeant anions in chloride homeostasis. Elife 7:. [Epub: Ahead of Print] 30260315
Ferdaus, M.Z. and E. Delpire. (2023). The K-Cl cotransporter-3 in the mammalian kidney. Curr Opin Nephrol Hypertens 32: 482-489. 37530088
Gagnon, E., Bergeron, M.J., Daigle, N.D., Lefoll, M.H., and Isenring, P. (2005). Molecular mechanisms of cation transport by the renal Na+-K+-Cl- cotransporter: structural insight into the operating characteristics of the ion transport sites. J. Biol. Chem. 280: 32555-32563. 16027154
Gagnon, M., M.J. Bergeron, G. Lavertu, A. Castonguay, S. Tripathy, R.P. Bonin, J. Perez-Sanchez, D. Boudreau, B. Wang, L. Dumas, I. Valade, K. Bachand, M. Jacob-Wagner, C. Tardif, I. Kianicka, P. Isenring, G. Attardo, J.A. Coull, and Y. De Koninck. (2013). Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat. Med. 19: 1524-1528. 24097188
Gauvain, G., I. Chamma, Q. Chevy, C. Cabezas, T. Irinopoulou, N. Bodrug, M. Carnaud, S. Lévi, and J.C. Poncer. (2011). The neuronal K-Cl cotransporter KCC2 influences postsynaptic AMPA receptor content and lateral diffusion in dendritic spines. Proc. Natl. Acad. Sci. USA 108: 15474-15479. 21878564
Goutierre, M., S. Al Awabdh, F. Donneger, E. François, D. Gomez-Dominguez, T. Irinopoulou, L. Menendez de la Prida, and J.C. Poncer. (2019). KCC2 Regulates Neuron.al Excitability and Hippocampal Activity via Interaction with Task-3 Channels. Cell Rep 28: 91-103.e7. 31269453
Haas, M. and B. Forbush, III. (2000). The Na-K-Cl cotransporter of secretory epithelia. Annu. Rev. Physiol. 62: 515-534. 10845101
Hamann, S., J.J. Herrera-Perez, T. Zeuthen, and F.J. Alvarez-Leefmans. (2010). Cotransport of water by the Na+-K+-2Cl- cotransporter NKCC1 in mammalian epithelial cells. J. Physiol. 588: 4089-4101. 20819947
Hartmann, A.M., L. Fu, C. Ziegler, M. Winklhofer, and H.G. Nothwang. (2021). Structural changes in the extracellular loop 2 of the murine KCC2 potassium chloride cotransporter modulate ion transport. J. Biol. Chem. 296: 100793. 34019872
Henderson, S.W., S. Wege, and M. Gilliham. (2018). Plant Cation-Chloride Cotransporters (CCC): Evolutionary Origins and Functional Insights. Int J Mol Sci 19:. 29415511
Hertz, L., L. Peng, and D. Song. (2015). Ammonia, like K+, stimulates the Na+, K+, 2 Cl- cotransporter NKCC1 and the Na+,K+-ATPase and interacts with endogenous ouabain in astrocytes. Neurochem Res 40: 241-257. 24929663
Huang Y., Wang JJ. and Yung WH. (2013). Coupling between GABA-A receptor and chloride transporter underlies ionic plasticity in cerebellar Purkinje neurons. Cerebellum. 12(3):328-30. 23341142
Ivakine, E.A., B.A. Acton, V. Mahadevan, J. Ormond, M. Tang, J.C. Pressey, M.Y. Huang, D. Ng, E. Delpire, M.W. Salter, M.A. Woodin, and R.R. McInnes. (2013). Neto2 is a KCC2 interacting protein required for neuronal Cl- regulation in hippocampal neurons. Proc. Natl. Acad. Sci. USA 110: 3561-3566. 23401525
Jo, J., G.H. Son, B.L. Winters, M.J. Kim, D.J. Whitcomb, B.A. Dickinson, Y.B. Lee, K. Futai, M. Amici, M. Sheng, G.L. Collingridge, and K. Cho. (2010). Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. Nat Neurosci 13: 1216-1224. 20852624
Ko B., L.M. Joshi, L.L. Cooke, N. Vazquez, M.W. Musch, S.C. Hebert, G. Gamba, R.S. Hoover. Phorbol ester stimulation of RasGRP1 regulates the sodium-chloride cotransporter by a PKC-independent pathway. Proc. Natl. Acad. Sci. U.S.A. 104: 20120-20125.
Kock Flygaard, R., C. Neumann, J. Anthony Lyons, and P. Nissen. (2021). Transport unplugged: KCCs are regulated through an N-terminal plug of the ion pathway. EMBO. J. 40: e108371. 34031898
Kok, M., K. Hartnett-Scott, C.L. Happe, M.L. MacDonald, E. Aizenman, and J.L. Brodsky. (2024). The expression system influences stability, maturation efficiency, and oligomeric properties of the potassium-chloride co-transporter KCC2. Neurochem Int 174: 105695. 38373478
Liu, S., S. Chang, B. Han, L. Xu, M. Zhang, C. Zhao, W. Yang, F. Wang, J. Li, E. Delpire, S. Ye, X.C. Bai, and J. Guo. (2019). Cryo-EM structures of the human cation-chloride cotransporter KCC1. Science 366: 505-508. 31649201
Llano, O., S. Smirnov, S. Soni, A. Golubtsov, I. Guillemin, P. Hotulainen, I. Medina, H.G. Nothwang, C. Rivera, and A. Ludwig. (2015). KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX. J. Cell Biol. 209: 671-686. 26056138
Marcoux, A.A., S. Slimani, L.E. Tremblay, R. Frenette-Cotton, A.P. Garneau, and P. Isenring. (2019). Endocytic recycling of Na -K -Cl cotransporter type 2: importance of exon 4. J. Physiol. 597: 4263-4276. 31216057
Marcoux, A.A., S. Slimani, L.E. Tremblay, R. Frenette-Cotton, A.P. Garneau, and P. Isenring. (2019). Regulation of Na-K-Cl cotransporter type 2 by the with no lysine kinase-dependent signaling pathway. Am. J. Physiol. Cell Physiol. 317: C20-C30. 30917032
Mercado, A., L. Song, N. Vázquez, D.B. Mount, and G. Gamba. (2000). Functional comparison of the K+-Cl- cotransporters KCC1 and KCC4. J. Biol. Chem. 275: 30326-30334. 10913127
Mistry, A.C., B.M. Wynne, L. Yu, V. Tomilin, Q. Yue, Y. Zhou, O. Al-Khalili, R. Mallick, H. Cai, A.A. Alli, B. Ko, A. Mattheyses, H.F. Bao, O. Pochynyuk, F. Theilig, D.C. Eaton, and R.S. Hoover. (2016). The Sodium Chloride Cotransporter (NCC) and Epithelial Sodium Channel (ENaC) Associate. Biochem. J. [Epub: Ahead of Print] 27422782
Mollajew, R., F. Zocher, A. Horner, B. Wiesner, E. Klussmann, and P. Pohl. (2010). Routes of epithelial water flow: aquaporins versus cotransporters. Biophys. J. 99: 3647-3656. 21112289
Moreno, E., D. Pacheco-Alvarez, M. Chávez-Canales, S. Elizalde, K. Leyva-Ríos, and G. Gamba. (2023). Structure-function relationships in the sodium chloride cotransporter. Front Physiol 14: 1118706. 36998989
Moseng, M.A., C.C. Su, K. Rios, M. Cui, M. Lyu, P. Glaza, P.A. Klenotic, E. Delpire, and E.W. Yu. (2022). Inhibition mechanism of NKCC1 involves the carboxyl terminus and long-range conformational coupling. Sci Adv 8: eabq0952. 36306358
Mount, D.B., A. Mercado, L. Song, J. Xu, A.L. George, Jr., E. Delpire, and G. Gamba. (1999). Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J. Biol. Chem. 274: 16355-16362. 10347194
Mount, D.B., R.S. Hoover, and S.C. Hebert. (1997). The molecular physiology of electroneutral cation-chloride cotransport. J. Membr. Biol. 158: 177-186. 9263880
Nan, J., Y. Yuan, X. Yang, Z. Shan, H. Liu, F. Wei, W. Zhang, and Y. Zhang. (2022). Cryo-EM structure of the human sodium-chloride cotransporter NCC. Sci Adv 8: eadd7176. 36351028
Neumann, C., L.L. Rosenbaek, R.K. Flygaard, M. Habeck, J.L. Karlsen, Y. Wang, K. Lindorff-Larsen, H.H. Gad, R. Hartmann, J.A. Lyons, R.A. Fenton, and P. Nissen. (2022). Cryo-EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity. EMBO. J. e110169. [Epub: Ahead of Print] 36239040
Otsu, Y., F. Donneger, E.J. Schwartz, and J.C. Poncer. (2020). Cation-chloride cotransporters and the polarity of GABA signalling in mouse hippocampal parvalbumin interneurons. J. Physiol. 598: 1865-1880. 32012273
Pacheco-Alvarez, D., P.S. Cristóbal, P. Meade, E. Moreno, N. Vazquez, E. Muñoz, A. Díaz, M.E. Juárez, I. Giménez, and G. Gamba. (2006). The Na+:Cl- cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J. Biol. Chem. 281: 28755-28763. 16887815
Park, J.H. and M.H. Saier, Jr. (1996). Phylogenetic, structural and functional characteristics of the Na-K-Cl cotransporter family. J. Membr. Biol. 149: 161-168. 8801348
Piermarini, P.M., D.C. Akuma, J.C. Crow, T.L. Jamil, W.G. Kerkhoff, K.C.M.F. Viel, and C.M. Gillen. (2017). Differential expression of putative sodium-dependent cation-chloride cotransporters in Aedes aegypti. Comp Biochem Physiol A Mol Integr Physiol 214: 40-49. [Epub: Ahead of Print] 28923771
Pressey, J.C., V. Mahadevan, C.S. Khademullah, Z. Dargaei, J. Chevrier, W. Ye, M. Huang, A.K. Chauhan, S.J. Meas, P. Uvarov, M.S. Airaksinen, and M.A. Woodin. (2017). A kainate receptor subunit promotes the recycling of the neuron-specific K+-Cl- co-transporter KCC2 in hippocampal neurons. J. Biol. Chem. 292: 6190-6201. 28235805
Puskarjov, M., P. Seja, S.E. Heron, T.C. Williams, F. Ahmad, X. Iona, K.L. Oliver, B.E. Grinton, L. Vutskits, I.E. Scheffer, S. Petrou, P. Blaesse, L.M. Dibbens, S.F. Berkovic, and K. Kaila. (2014). A variant of KCC2 from patients with febrile seizures impairs neuronal Cl- extrusion and dendritic spine formation. EMBO Rep 15: 723-729. 24668262
Ruiz Munevar, M.J., V. Rizzi, C. Portioli, P. Vidossich, E. Cao, M. Parrinello, L. Cancedda, and M. De Vivo. (2024). Cation Chloride Cotransporter NKCC1 Operates through a Rocking-Bundle Mechanism. J. Am. Chem. Soc. 146: 552-566. 38146212
Russell, J.M. (2000). Sodium-potassium-chloride cotransport. Physiol. Rev. 80: 211-276. 10617769
Schwale, C., S. Schumacher, C. Bruehl, S. Titz, A. Schlicksupp, M. Kokocinska, J. Kirsch, A. Draguhn, and J. Kuhse. (2016). KCC2 knockdown impairs glycinergic synapse maturation in cultured spinal cord neurons. Histochem Cell Biol 145: 637-646. 26780567
Seaayfan, E., N. Defontaine, S. Demaretz, N. Zaarour, and K. Laghmani. (2015). OS9 interacts with NKCC2 and targets its immature form for the endoplasmic-reticulum-associated degradation pathway. J. Biol. Chem. [Epub: Ahead of Print] 26721884
Shmukler, B.E., A. Rivera, K. Nishimura, A. Hsu, J.G. Wohlgemuth, J.S. Dlott, L. Michael Snyder, C. Brugnara, and S.L. Alper. (2022). Erythroid-specific inactivation of Slc12a6/Kcc3 by EpoR promoter-driven Cre expression reduces K-Cl cotransport activity in mouse erythrocytes. Physiol Rep 10: e15186. 35274823
Shrestha S., Park J., Ahn SJ. and Kim Y. (2015). PGE2 MEDIATES OENOCYTOID CELL LYSIS VIA A SODIUM-POTASSIUM-CHLORIDE COTRANSPORTER. Arch Insect Biochem Physiol. 89(4):218-29. 25845372
Somasekharan, S., J. Tanis, and B. Forbush. (2012). Loop diuretic and ion-binding residues revealed by scanning mutagenesis of transmembrane helix 3 (TM3) of Na-K-Cl cotransporter (NKCC1). J. Biol. Chem. 287: 17308-17317. 22437837
Stechman, M.J., N.Y. Loh, and R.V. Thakker. (2007). Genetics of hypercalciuric nephrolithiasis: renal stone disease. Ann. N.Y. Acad. Sci. 1116: 461-484. 17872384
Wan, L., L. Chen, J. Yu, G. Wang, Z. Wu, B. Qian, X. Liu, and Y. Wang. (2020). Coordinated downregulation of KCC2 and GABA receptor contributes to inhibitory dysfunction during seizure induction. Biochem. Biophys. Res. Commun. 532: 489-495. 32892950
Wang, J., C. Sun, N. Gerdes, C. Liu, M. Liao, J. Liu, M.A. Shi, A. He, Y. Zhou, G.K. Sukhova, H. Chen, X.W. Cheng, M. Kuzuya, T. Murohara, J. Zhang, X. Cheng, M. Jiang, G.E. Shull, S. Rogers, C.L. Yang, Q. Ke, S. Jelen, R. Bindels, D.H. Ellison, P. Jarolim, P. Libby, and G.P. Shi. (2015). Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat. Med. 21: 820-826. 26099046
Warmuth, S., I. Zimmermann, and R. Dutzler. (2009). X-ray structure of the C-terminal domain of a prokaryotic cation-chloride cotransporter. Structure 17: 538-546. 19368887
Witte M., Reinert T., Dietz B., Nerlich J., Rubsamen R. and Milenkovic I. (2014). Depolarizing chloride gradient in developing cochlear nucleus neurons: underlying mechanism and implication for calcium signaling. Neuroscience. 261:207-22. 24388924
Worrell, R.T., L. Merk, and J.B. Matthews. (2008). Ammonium transport in the colonic crypt cell line, T84: role for Rhesus glycoproteins and NKCC1. Am. J. Physiol. Gastrointest. Liver Physiol. 294: G429-440. 18032481
Wu, A., M.J. Wolley, Q. Wu, D. Cowley, J. Palmfeldt, P.A. Welling, R.A. Fenton, and M. Stowasser. (2022). Acute Intravenous NaCl and Volume Expansion Reduces Sodium-Chloride Cotransporter Abundance and Phosphorylation in Urinary Extracellular Vesicles. Kidney360 3: 910-921. 36128481
Wu, H., X. Che, J. Tang, F. Ma, K. Pan, M. Zhao, A. Shao, Q. Wu, J. Zhang, and Y. Hong. (2016). The K+-Cl- Cotransporter KCC2 and Chloride Homeostasis: Potential Therapeutic Target in Acute Central Nervous System Injury. Mol Neurobiol 53: 2141-2151. 25941074
Xie, Y., S. Chang, C. Zhao, F. Wang, S. Liu, J. Wang, E. Delpire, S. Ye, and J. Guo. (2020). Structures and an activation mechanism of human potassium-chloride cotransporters. Sci Adv 6:. 33310850
Yang, X., Q. Wang, and E. Cao. (2020). Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy. Nat Commun 11: 1016. 32081947
Zhao, Y., H. Schubert, A. Blakely, B. Forbush, M.D. Smith, J. Rinehart, and E. Cao. (2024). Structural bases for Na-Cl cotransporter inhibition by thiazide diuretic drugs and activation by kinases. Nat Commun 15: 7006. 39143061
Zhao, Y., J. Shen, Q. Wang, M.J. Ruiz Munevar, P. Vidossich, M. De Vivo, M. Zhou, and E. Cao. (2022). Structure of the human cation-chloride cotransport KCC1 in an outward-open state. Proc. Natl. Acad. Sci. USA 119: e2109083119. 35759661
Zhao, Y., K. Roy, P. Vidossich, L. Cancedda, M. De Vivo, B. Forbush, and E. Cao. (2022). Structural basis for inhibition of the Cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide. Nat Commun 13: 2747. 35585053
Zhu, M.H., T.S. Sung, M. Kurahashi, L.E. O''Kane, K. O''Driscoll, S.D. Koh, and K.M. Sanders. (2016). Na+-K+-Cl- co-transporter (NKCC) maintains the chloride gradient to sustain pacemaker activity in interstitial cells of Cajal. Am. J. Physiol. Gastrointest Liver Physiol ajpgi.00277.2016. [Epub: Ahead of Print] 27742704
Zhu, Y., X. Jian, S. Chen, G. An, D. Jiang, Q. Yang, J. Zhang, J. Hu, Y. Qiu, X. Feng, J. Guo, X. Chen, Z. Li, R. Zhou, C. Hu, N. He, F. Shi, S. Huang, H. Liu, X. Li, L. Xie, Y. Zhu, L. Zhao, Y. Jiang, J. Li, J. Wang, L. Qiu, X. Chen, W. Jia, Y. He, and W. Zhou. (2024). Targeting gut microbial nitrogen recycling and cellular uptake of ammonium to improve bortezomib resistance in multiple myeloma. Cell Metab 36: 159-175.e8. 38113887