TCDB is operated by the Saier Lab Bioinformatics Group

2.A.36 The Monovalent Cation:Proton Antiporter-1 (CPA1) Family

The CPA1 family is a large family of proteins derived from Gram-positive and Gram-negative bacteria, blue-green bacteria, archaea and eukaryotes including yeast, plants and animals. Transporters from eukaryotes have been functionally characterized, and all of these catalyze Na+:H+ exchange. Their primary physiological functions may be in (1) cytoplasmic pH regulation, extruding the H+ generated during metabolism, and (2) salt tolerance (in plants), due to Na+ uptake into vacuoles. Bacterial homologues are also Na+:H+ antiporters, but some also catalyze Li+:H+ antiport or Ca2+:H+ antiport under some conditions (Waditee et al., 2001).  The pathophylsiology of human members of this family have been reviewed (Padan and Landau 2016). Most prokaryotic Na+/H+ exchangers belong to the Cation/Proton Antiporter (CPA) superfamily, the Ion Transport (IT) superfamily, or the Na+-translocating Mrp transporter superfamily (Patiño-Ruiz et al. 2022). Transport mechanisms for Na+/H+ exchangers that explain their highly pH-regulated activity profiles have been considered (Patiño-Ruiz et al. 2022). Dwivedi and Mahendiran 2022 describe the interplay in the structure-function of membrane transporter proteins that may be implemented to explore the plethora of biological events such as conformation, folding, ion binding and translocation.

The phylogenetic tree for the CPA1 family shows three principal clusters. The first cluster includes proteins derived exclusively from animals, and all of the functionally characterized members of the family belong to this cluster. Of the two remaining clusters, one includes all bacterial homologues while the other includes one from Arabidopsis thaliana, one from Homo sapiens and two from yeast (S. cerevisiae and S. pombe). Several organisms possess multiple paralogues; for example seven paralogues are found in C. elegans, and five are known for humans. Most of these paralogues are very similar in sequence, and they belong to the animal specific cluster.

Using the mammalian NHE1 (2.A.36.1.1), it has been found that TMSs 4 and 9 as well as the extracellular loop between TMSs 3 and 4 are important for drug (amiloride- and benzoyl guanidinium-based derivatives) sensitivities. Mutations in these regions also affect transport activities. M4 and M9 therefore contain critical sites for both drug and cation recognition. Cation/proton antiporters (CPAs) regulate cells' salt concentrations and internal pH. Their malfunction is associated with a range of human pathologies, yet only a handful of CPA-targeting therapeutics are presently in clinical studies. Masrati et al. 2023 discussed how recently published mammalian protein structures and emerging computational technologies may help to bridge this gap.

Daxx, a death domain-associated protein, (O35613) interacts with sodium hydrogen exchanger isoform 1 (NHE1). During ischemic stress, Daxx translocates from the nucleus to the cytoplasm, where it colocalizes with NHE1. Daxx binds to the ezrin/radixin/moesin (ERM)-interacting domain of NHE1, in competition with ezrin. Ischemic insult may trigger the nucleo-cytoplasmic translocation of Daxx, following which cytoplasmic Daxx stimulates the NHE1 transporter activity and suppresses activation of the NHE1-ezrin-Akt-1 pathway (Jung et al., 2007).

One homologue, Nhe (TC #2.A.36.1.4), is a chloride-dependent Na+:H+ antiporter in which residues 1-375 of the 438 aas are identical to Nhe-1 (TC #2.A.36.1.1). The C-terminal 63 residues are unique (Sangan et al., 2002). It is found in the apical membranes of crypt cells of the rat distal colon. This protein was reported to exhibit 6 putative TMSs and is encoded by a 2.5 kb mRNA present in many tissues (Sangan et al., 2002). However, the WHAT program predicts 10 TMSs. nhe transfected fibroblasts exhibit Cl--dependent Na+-dependent intracellular pH recovery to an acid load that was blocked by 5-ethylisopropylamiloride and 5'-nitro-2-(3-phenylpropylamino)benzoate (a Cl- channel blocker).

Numerous members of the CPA1 family have been sequenced, and these proteins vary substantially in size. The bacterial proteins have 527-549 amino acyl residues while eukaryotic proteins are generally larger, varying in size from 541-894 residues. They exhibit 10-12 putative transmembrane α-helical spanners (TMSs). A proposed topological model (Wakabayashi et al., 2000) suggests that in addition to 12 TMSs, a region between TMSs 9 and 10 dips into the membrane to line the pore. However, one homologue, Nhx1 of S. cerevisiae, has an extracellular glycosylated C-terminus (Wells and Rao, 2001).

A gene encoding a Na+/H+ antiporter was cloned from the chromosome of Halobacillus dabanensis strain D-8(T) by functional complementation. Its presence enabled the antiporter-deficient E. coli strain KNabc to survive in the presence of 0.2 M NaCl or 5 mM LiCl (Yang et al. 2006). The gene was sequenced and designated as nhaH (2.A.36.6.7). NhaH has 403 residues and is 54% identical and 76% similar to the NhaG Na+/H+ antiporter of Bacillus subtilis (TC# 2.A.36.6.2). The hydropathy profile was characteristic of a membrane protein with 12 putative transmembrane domains. Everted membrane vesicles prepared from E. coli cells carrying nhaH exhibited Na+/H+ as well as Li+/H+ antiporter activity, which was pH-dependent with highest activities at pH 8.5-9.0 and at pH 8.5, respectively. nhaH confers upon E. coli KNabc cells the ability to grow under alkaline conditions (Yang et al., 2006). 

Na+, K+ and pH homeostasis are controlled by the monovalent cation proton antiporter (CPA) superfamily. Kong et al. 2021 identified 35 ZmCPAs in maize comprising 13 Na+/H+ exchangers (ZmNHXs), 16 cation/H+ exchanger (ZmCHXs), and 6 K+ efflux antiporters (ZmKEAs). Most of them were localized to the plasma membrane or tonoplast. ZmCHXs were highly expressed in anthers, while ZmNHXs and ZmKEAs showed high expression in various tissues. ZmNHX5 and ZmKEA2 were up-regulated in maize seedlings under both NaCl and KCl stresses. Yeast complementation experiments revealed the roles of ZmNHX5, ZmKEA2 in NaCl tolerance (Kong et al. 2021).

Membrane ion channels and Na+-Li+/H+ exchangers (NHEs) fractionate Li isotopes (Poet et al. 2023). This systematic 6Li enrichment is driven by the membrane potential for channels, and by intracellular pH for NHEs, where it displays cooperativity, a hallmark of dimeric transport, evidencing that transport proteins discriminate between isotopes differing by one neutron.

The generalized transport reaction catalyzed by functionally characterized members of the CPA1 family is:

Na+ (out) + H+ (in) ⇌ Na+ (in) + H+ (out)

This family belongs to the: CPA Superfamily.

References associated with 2.A.36 family:

Ahmed, M.Z., T. Shimazaki, S. Gulzar, A. Kikuchi, B. Gul, M.A. Khan, H.W. Koyro, B. Huchzermeyer, and K.N. Watanabe. (2013). The influence of genes regulating transmembrane transport of Na on the salt resistance of Aeluropus lagopoides. Funct Plant Biol 40: 860-871. 32481156
An, R., Q.J. Chen, M.F. Chai, P.L. Lu, Z. Su, Z.X. Qin, J. Chen, and X.C. Wang. (2007). AtNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li/H antiporter. Plant J. 49: 718-728. 17270011
Apse, M.P., G.S. Aharon, W.A. Snedden, and E. Blumwald. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258. 10455050
Arcos-Hernández, C. and T. Nishigaki. (2023). Ion currents through the voltage sensor domain of distinct families of proteins. J Biol Phys 49: 393-413. 37851173
Ayadi, M., R. Ben Ayed, R. Mzid, S. Aifa, and M. Hanana. (2019). Computational Approach for Structural Feature Determination of Grapevine NHX Antiporters. Biomed Res Int 2019: 1031839. 30729118
Bañuelos, M.A., H. Sychrová, C. Bleykasten-Grosshans, J.-L. Souciet, and S. Potier. (1998). The Nha1 antiporter of Saccharomyces cerevisiaemediates sodium and potassium efflux. Microbiology 144: 2749-2758. 9802016
Beg, A.A., G.G. Ernstrom, P. Nix, M.W. Davis, and E.M. Jorgensen. (2008). Protons act as a transmitter for muscle contraction in C. elegans. Cell. 132: 149-160. 18191228
Britto DT. and Kronzucker HJ. (2015). Sodium efflux in plant roots: what do we really know? J Plant Physiol. 186-187:1-12. 26318642
Buckley, B.J., A. Kumar, A. Aboelela, R.S. Bujaroski, X. Li, H. Majed, L. Fliegel, M. Ranson, and M.J. Kelso. (2021). Screening of 5- and 6-Substituted Amiloride Libraries Identifies Dual-uPA/NHE1 Active and Single Target-Selective Inhibitors. Int J Mol Sci 22:. 33804289
Carmosino, M., F. Rizzo, G. Procino, D. Basco, G. Valenti, B. Forbush, N. Schaeren-Wiemers, M.J. Caplan, and M. Svelto. (2010). MAL/VIP17, a New Player in the Regulation of NKCC2 in the Kidney. Mol. Biol. Cell 21: 3985-3997. 20861303
Cavusoglu, E., U. Sari, and I. Tiryaki. (2023). Genome-wide identification and expression analysis of / () genes in tomato under salt stress. Plant Direct 7: e543. 37965196
Chang, G., J. Wang, H. Zhang, Y. Zhang, C. Wang, H. Xu, H. Zhang, Y. Lin, L. Ma, Q. Li, and T. Pang. (2014). CD44 targets Na+/H+ exchanger 1 to mediate MDA-MB-231 cells' metastasis via the regulation of ERK1/2. Br J Cancer 110: 916-927. 24434427
Chen, K.C., M.L. Chang, C.S. Lin, C.P. Rajneesh, C.H. Liao, W.C. You, H.C. Maa, and Y.N. Wu. (2023). Insight into SLC9A3 deficiency-mediated micturition dysfunction caused by electrolyte imbalance. Biomed Pharmacother 158: 114155. 36916397
Chowdhury, S. and K. Pal. (2023). Architecture and rearrangements of a sperm-specific Na/H exchanger. Res Sq. 37886505
Cottle, W.T., C.H. Wallert, K.K. Anderson, M.F. Tran, C.L. Bakker, M.A. Wallert, and J.J. Provost. (2020). Calcineurin homologous protein isoform 2 supports tumor survival via the sodium hydrogen exchanger isoform 1 in non-small cell lung cancer. Tumour Biol 42: 1010428320937863. 32686600
Counillon, L. and J. Pouysségur. (2000). The expanding family of eucayotic Na+/H+ exchangers. J. Biol. Chem. 275: 1-4. 10617577
Deisl, C., A. Simonin, M. Anderegg, G. Albano, G. Kovacs, D. Ackermann, H. Moch, W. Dolci, B. Thorens, M. A Hediger, and D.G. Fuster. (2013). Sodium/hydrogen exchanger NHA2 is critical for insulin secretion in β-cells. Proc. Natl. Acad. Sci. USA 110: 10004-10009. 23720317
Dionisi, M., B. Riva, M. Delconti, C. Meregalli, A. Chiorazzi, A. Canta, P. Alberti, V. Carozzi, E. Pozzi, D. Lim, A.A. Genazzani, C. Distasi, and G. Cavaletti. (2023). Inhibition of NHE1 transport activity and gene transcription in DRG neurons in oxaliplatin-induced painful peripheral neurotoxicity. Sci Rep 13: 3991. 36894669
Dominguez Rieg, J.A., S. de la Mora Chavez, and T. Rieg. (2016). Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3. Am. J. Physiol. Regul Integr Comp Physiol 311: R1186-R1191. 27733387
Dutta, D. and L. Fliegel. (2018). Structure and function of yeast and fungal Na+ /H+ antiporters. IUBMB Life 70: 23-31. 29219228
Dutta, D. and L. Fliegel. (2019). Molecular modeling and inhibitor docking analysis of the Na/H exchanger isoform one. Biochem. Cell Biol. 97: 333-343. 30058365
Dutta, D., A. Ullah, S. Bibi, and L. Fliegel. (2019). Functional Analysis of Conserved Transmembrane Charged Residues and a Yeast Specific Extracellular Loop of the Plasma Membrane Na/H Antiporter of Schizosaccharomyces pombe. Sci Rep 9: 6191. 30996236
Dutta, D., K. Shin, J.K. Rainey, and L. Fliegel. (2017). Transmembrane Segment XI of the Na+/H+ Antiporter of S. pombe is a Critical Part of the Ion Translocation Pore. Sci Rep 7: 12793. 29038548
Dwivedi, M. and S. Mahendiran. (2022). Ubiquitous existence of Cation-Proton antiporter and its Structure-function Interplay: A clinical prospect. Curr. Protein. Pept. Sci. [Epub: Ahead of Print] 36380405
Ferguson, G.P., S. Tötemeyer, M.J. MacLean, and I.R. Booth. (1998). Methylglyoxal production in bacteria: suicide or survival? Arch. Microbiol. 170: 209-219. 9732434
Fliegel, L. (2005). Identification of conserved polar residues important for salt tolerance by the Na+/H+ exchanger of Schizosaccharomyces pombe. Mol. Cell Biochem 268: 83-92. 15724441
Fliegel, L. (2021). Role of Genetic Mutations of the Na/H Exchanger Isoform 1, in Human Disease and Protein Targeting and Activity. Mol. Cell Biochem 476: 1221-1232. 33201382
Fuster, D., O.W. Moe, and D.W. Hilgemann. (2008). Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. J Gen Physiol 132: 465-480. 18824592
Gaxiola, R.A., R. Rao, A. Sherman, P. Grisafi, S.L. Alper, and G.R. Fink. (1999). The Arabidopsis thalianaproton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96: 1480-1485. 9990049
Goswami, P., C. Paulino, D. Hizlan, J. Vonck, O. Yildiz, and W. Kühlbrandt. (2011). Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1. EMBO. J. 30: 439-449. 21151096
Gouda, T., M. Kuroda, T. Hiramatsu, K. Nozaki, T. Kuroda, T. Mizushima, and T. Tsuchiya. (2001). nhaG Na+/H+ antiporter gene of Bacillus subtilis ATCC9372, which is missing in the complete genome sequence of strain 168, and properties of the antiporter. J Biochem 130: 711-717. 11686935
Guissart, C., X. Li, B. Leheup, N. Drouot, B. Montaut-Verient, E. Raffo, P. Jonveaux, A.F. Roux, M. Claustres, L. Fliegel, and M. Koenig. (2015). Mutation of SLC9A1, encoding the major Na⁺/H⁺ exchanger, causes ataxia-deafness Lichtenstein-Knorr syndrome. Hum Mol Genet 24: 463-470. 25205112
Hussain, S.I., N. Muhammad, S.U.D. Shah, F. Fardous, S.A. Khan, N. Khan, A.U. Rehman, M. Siddique, S.A. Wasan, R. Niaz, H. Ullah, N. Khan, N. Muhammad, M.U. Mirza, N. Wasif, and S. Khan. (2023). Structural and functional implications of SLC13A3 and SLC9A6 mutations: an in silico approach to understanding intellectual disability. BMC Neurol 23: 353. 37794328
Ilie, A., A.Y. Gao, J. Reid, A. Boucher, C. McEwan, H. Barrière, G.L. Lukacs, R.A. McKinney, and J. Orlowski. (2016). A Christianson syndrome-linked deletion mutation (∆(287)ES(288)) in SLC9A6 disrupts recycling endosomal function and elicits neurodegeneration and cell death. Mol Neurodegener 11: 63. 27590723
Ilie, A., E. Weinstein, A. Boucher, R.A. McKinney, and J. Orlowski. (2014). Impaired posttranslational processing and trafficking of an endosomal Na+/H+ exchanger NHE6 mutant (Δ(370)WST(372)) associated with X-linked intellectual disability and autism. Neurochem Int 73: 192-203. 24090639
Inaba, M., A. Sakamoto, and N. Murata. (2001). Functional expression in Escherichia coliof low-affinity and high-affinity Na(+)(Li(+))/H(+) antiporters of Synechocystis. J. Bacteriol.183: 1376-1384. 11157951
Iwaki, T., Y. Higashida, H. Tsuji, Y. Tamai, and Y. Watanabe. (1998). Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxiiand functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae. Yeast 14: 1167-1174. 9791888
Janecke AR., Heinz-Erian P., Yin J., Petersen BS., Franke A., Lechner S., Fuchs I., Melancon S., Uhlig HH., Travis S., Marinier E., Perisic V., Ristic N., Gerner P., Booth IW., Wedenoja S., Baumgartner N., Vodopiutz J., Frechette-Duval MC., De Lafollie J., Persad R., Warner N., Tse CM., Sud K., Zachos NC., Sarker R., Zhu X., Muise AM., Zimmer KP., Witt H., Zoller H., Donowitz M. and Muller T. (2015). Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet. 24(23):6614-23. 26358773
Jha, A., M. Joshi, N.S. Yadav, P.K. Agarwal, and B. Jha. (2011). Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38: 1965-1973. 20853145
Jinadasa T., Josephson CB., Boucher A. and Orlowski J. (2015). Determinants of Cation Permeation and Drug Sensitivity in Predicted Transmembrane Helix 9 and Adjoining Exofacial Re-entrant Loop 5 of Na+/H+ Exchanger NHE1. J Biol Chem. 290(29):18173-86. 26063808
Karim, R., B. Bouchra, G. Fatima, F.M. Abdelkarim, and S. Laila. (2020). Plant NHX Antiporters: from function to biotechnological application, with case study. Curr. Protein. Pept. Sci. [Epub: Ahead of Print] 33143624
Kedrov, A., S. Wegmann, S.H. Smits, P. Goswami, H. Baumann, and D.J. Muller. (2007). Detecting molecular interactions that stabilize, activate and guide ligand-binding of the sodium/proton antiporter MjNhaP1 from Methanococcus jannaschii. J Struct Biol 159: 290-301. 17428680
Khadilkar, A., P. Iannuzzi, and J. Orlowski. (2001). Identification of sites in the second exomembrane loop and ninth transmembrane helix of the mammalian Na+/H+ exchanger important for drug recognition and cation translocation. J. Biol. Chem. 276: 43792-43800. 11564737
Kinclova-Zimmermannova O., Falson P., Cmunt D. and Sychrova H. (2015). A hydrophobic filter confers the cation selectivity of Zygosaccharomyces rouxii plasma-membrane Na+/H+ antiporter. J Mol Biol. 427(8):1681-94. 25701798
Kinclova-Zimmermannova, O., and H. Sychrová. (2007). Plasma-membrane Cnh1 Na+/H+ antiporter regulates potassium homeostasis in Candida albicans. Microbiology. 153: 2603-2612. 17660424
Kong, M., M. Luo, J. Li, Z. Feng, Y. Zhang, W. Song, R. Zhang, R. Wang, Y. Wang, J. Zhao, Y. Tao, and Y. Zhao. (2021). Genome-wide identification, characterization, and expression analysis of the monovalent cation-proton antiporter superfamily in maize, and functional analysis of its role in salt tolerance. Genomics 113: 1940-1951. 33895282
Krauke, Y. and H. Sychrova. (2008). Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species. BMC Microbiol 8: 80. 18492255
Kuroda, T., N. Fujita, J. Utsugi, M. Kuroda, T. Mizushima, and T. Tsuchiya. (2004). A major Li+ extrusion system NhaB of Pseudomonas aeruginosa : comparison with the major Na+ extrusion system NhaP. Microbiol Immunol 48: 243-250. 15107534
Lee, B.L., B.D. Sykes, and L. Fliegel. (2011). Structural analysis of the Na+/H+ exchanger isoform 1 (NHE1) using the divide and conquer approach. Biochem. Cell Biol. 89: 189-199. 21455270
Lee, B.L., Y. Liu, X. Li, B.D. Sykes, and L. Fliegel. (2012). Structural and functional analysis of extracellular loop 4 of the Nhe1 isoform of the Na+/H+ exchanger. Biochim. Biophys. Acta. 1818: 2783-2790. 22772156
Li, H., C. Ren, X. Jiang, C. Cheng, Y. Ruan, X. Zhang, W. Huang, T. Chen, and C. Hu. (2019). Na+/H+ exchanger (NHE) in Pacific white shrimp (Litopenaeus vannamei): Molecular cloning, transcriptional response to acidity stress, and physiological roles in pH homeostasis. PLoS One 14: e0212887. 30811482
Li, S., B. Yan, B. Wu, J. Su, J. Lu, T.W. Lam, K.R. Boheler, E.N. Poon, and R. Luo. (2023). Integrated modeling framework reveals co-regulation of transcription factors, miRNAs and lncRNAs on cardiac developmental dynamics. Stem Cell Res Ther 14: 247. 37705079
Liang, L., L. Guo, Y. Zhai, Z. Hou, W. Wu, X. Zhang, Y. Wu, X. Liu, S. Guo, G. Gao, and W. Liu. (2023). Genome-wide characterization of gene family in potato () and expression analyses under salt and hormone stress. Front Plant Sci 14: 1201730. 37457336
Lin, H., W. Du, Y. Yang, K.S. Schumaker, and Y. Guo. (2014). A calcium-independent activation of the Arabidopsis SOS2-like protein kinase24 by its interacting SOS3-like calcium binding protein1. Plant Physiol. 164: 2197-2206. 24521877
Liu Y., Basu A., Li X. and Fliegel L. (2015). Topological analysis of the Na/H exchanger. Biochim Biophys Acta. 1848(10 Pt A):2385-2393. 26215741
Liu, Q.L., K.D. Xu, M. Zhong, Y.Z. Pan, B.B. Jiang, G.L. Liu, and Y. Jia. (2013). Cloning and characterization of a novel vacuolar Na+/H+ antiporter gene (Dgnhx1) from chrysanthemum. PLoS One 8: e83702. 24376735
Liu, T., J.C. Huang, W.L. Zuo, C.L. Lu, M. Chen, X.S. Zhang, Y.C. Li, H. Cai, W.L. Zhou, Z.Y. Hu, F. Gao, and Y.X. Liu. (2010). A novel testis-specific Na+/H+ exchanger is involved in sperm motility and fertility. Front Biosci (Elite Ed) 2: 566-581. 20036903
Liu, Y., H. Wen, X. Qi, X. Zhang, K. Zhang, H. Fan, Y. Tian, Y. Hu, and Y. Li. (2019). Genome-wide identification of the Na/H exchanger gene family in Lateolabrax maculatus and its involvement in salinity regulation. Comp Biochem Physiol Part D Genomics Proteomics 29: 286-298. 30660028
Ma, W., Z. Ren, Y. Zhou, J. Zhao, F. Zhang, J. Feng, W. Liu, and X. Ma. (2020). Genome-Wide Identification of the NHX Genes Reveals that the Endosomal-Type is Critical for the Salt Tolerance of Cotton. Int J Mol Sci 21:. 33081060
Malas, K.M., D.S. Lambert, J.S. Heisner, A.K.S. Camara, and D.F. Stowe. (2022). Time and charge/pH-dependent activation of K channel-mediated K influx and K/H exchange in guinea pig heart isolated mitochondria; role in bioenergetic stability. Biochim. Biophys. Acta. Bioenerg 1863: 148908. [Epub: Ahead of Print] 35961396
Mariani, N.A.P., J.V. Silva, M. Fardilha, and E.J.R. Silva. (2023). Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update. [Epub: Ahead of Print] 37141450
Masrati, G., A. Kessel, and N. Ben-Tal. (2023). Cation/proton antiporters: novel structure-driven pharmaceutical opportunities. Trends Pharmacol Sci 44: 258-262. 36934025
Matsuoka, R., R. Fudim, S. Jung, C. Zhang, A. Bazzone, Y. Chatzikyriakidou, C.V. Robinson, N. Nomura, S. Iwata, M. Landreh, L. Orellana, O. Beckstein, and D. Drew. (2022). Structure, mechanism and lipid-mediated remodeling of the mammalian Na/H exchanger NHA2. Nat Struct Mol Biol 29: 108-120. 35173351
Mishra, S., H. Alavilli, B.H. Lee, S.K. Panda, and L. Sahoo. (2014). Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene from mungbean (VrNHX1) and its ectopic expression enhanced salt tolerance in Arabidopsis thaliana. PLoS One 9: e106678. 25350285
Monet, M., M. Poët, S. Tauzin, A. Fouqué, A. Cophignon, D. Lagadic-Gossmann, P. Vacher, P. Legembre, and L. Counillon. (2016). The cleaved FAS ligand activates the Na+/H+ exchanger NHE1 through Akt/ROCK1 to stimulate cell motility. Sci Rep 6: 28008. 27302366
Mourin, M., A. Bhattacharjee, A. Wai, G. Hausner, J. O''Neil, and P. Dibrov. (2021). Pharmacophore-based screening and modification of amiloride analogs for targeting the NhaP-type cation-proton antiporter in. Can. J. Microbiol. 67: 835-849. 34224663
Mourin, M., A. Wai, J. O''Neil, G. Hausner, and P. Dibrov. (2019). Physiological, Structural, and Functional Analysis of the Paralogous Cation-Proton Antiporters of NhaP Type from. Int J Mol Sci 20:. 31130620
Mourin, M., A. Wai, J.D. ONeil, C. Schubiger, C.C. Häse, G. Hausner, and P. Dibrov. (2018). A Pathway Leading to Cation Binding Pocket Determines the Selectivity of NhaP2 Antiporter in Vibrio cholerae. Biochem. Cell Biol. [Epub: Ahead of Print] 30011386
Mukherjee, S., L. Kallay, C.L. Brett, and R. Rao. (2006). Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homoeostasis and vesicle trafficking. Biochem. J. 398: 97-105. 16671892
Muzzachi, S., L. Guerra, N.A. Martino, M. Favia, G. Punzi, F. Silvestre, A.C. Guaricci, M.T. Roscino, C.L. Pierri, M.E. Dell''Aquila, V. Casavola, G.M. Lacalandra, and E. Ciani. (2018). Effect of cariporide on ram sperm pH regulation and motility: possible role of NHE1. Reproduction. [Epub: Ahead of Print] 29491124
Nakamura, N., S. Tanaka, Y. Teko, K. Mitsui, and H. Kanazawa. (2005). Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J. Biol. Chem. 280: 1561-1572. 15522866
Nass, R.K., W. Cunningham, and R. Rao. (1997). Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutation in the plasma membrane H+-ATPase. J. Biol. Chem. 272: 26145-26152. 9334180
Numata, M. and J. Orlowski. (2001). Molecular cloning and characterization of a novel (Na+/K+)/H+ exchanger localized to the trans-Golgi network. J. Biol. Chem. 276: 17387-17394. 11279194
Núñez-Ramírez, R., M.J. Sánchez-Barrena, I. Villalta, J.F. Vega, J.M. Pardo, F.J. Quintero, J. Martinez-Salazar, and A. Albert. (2012). Structural insights on the plant salt-overly-sensitive 1 (SOS1) Na+/H+ antiporter. J. Mol. Biol. 424: 283-294. 23022605
Nygaard, E.B., J.O. Lagerstedt, G. Bjerre, B. Shi, M. Budamagunta, K.A. Poulsen, S. Meinild, R.R. Rigor, J.C. Voss, P.M. Cala, and S.F. Pedersen. (2011). Structural modeling and electron paramagnetic resonance spectroscopy of the human Na+/H+ exchanger isoform 1, NHE1. J. Biol. Chem. 286: 634-648. 20974853
Ohgaki, R., S.C. van IJzendoorn, M. Matsushita, D. Hoekstra, and H. Kanazawa. (2011). Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry 50: 443-450. 21171650
Orlowski, J. and S. Grinstein. (1997). Na+/H+ exchangers of mammalian cells. J. Biol. Chem. 272: 22373-22376. 9278382
Orlowski, J., R.A. Kandasamy, and G.E. Shull. (1992). Molecular cloning of putative members of the Na+/H+ exchanger gene family. J. Biol. Chem. 267: 9331-9339. 1577762
Orriss, G.L., V. To, A. Moya-Torres, G. Seabrook, J. O'Neil, and J. Stetefeld. (2020). Solution structure of the cytoplasmic domain of NhaP2 a K/H antiporter from Vibrio cholera. Biochim. Biophys. Acta. Biomembr 1862: 183225. 32126231
Padan, E. and M. Landau. (2016). Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Met Ions Life Sci 16: 391-458. 26860308
Pan, T., Y. Liu, X. Su, L. An, and Q.S. Qiu. (2017). Domain-switch analysis of PeNHX3 from Populus euphratica reveals the critical role of the transmembrane domain 11 in Na and Li transport. J Plant Physiol. 219: 1-11. 28946051
Parker MD., Myers EJ. and Schelling JR. (2015). Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci. 72(11):2061-74. 25680790
Patel, H. and D.L. Barber. (2005). A developmentally regulated Na-H exchanger in Dictyostelium discoideum is necessary for cell polarity during chemotaxis. J. Cell Biol. 169: 321-329. 15851518
Patiño-Ruiz, M., C. Ganea, and O. Călinescu. (2022). Prokaryotic Na/H Exchangers-Transport Mechanism and Essential Residues. Int J Mol Sci 23:. 36012428
Pfeiffer, J., D. Johnson, and K. Nehrke. (2008). Oscillatory transepithelial H+ flux regulates a rhythmic behavior in C. elegans. Curr. Biol. 18: 297-302. 18291648
Poet, M., N. Vigier, Y. Bouret, G. Jarretou, R. Gautier, S. Bendahhou, V. Balter, M. Montanes, F. Thibon, and L. Counillon. (2023). Biological fractionation of lithium isotopes by cellular Na/H exchangers unravels fundamental transport mechanisms. iScience 26: 106887. 37324528
Qiu, Q.S. (2016). Plant endosomal NHX antiporters: activity and function. Plant Signal Behav 0. [Epub: Ahead of Print] 26890367
Radchenko, M.V., R. Waditee, S. Oshimi, M. Fukuhara, T. Takabe, and T. Nakamura. (2006). Cloning, functional expression and primary characterization of Vibrio parahaemolyticus K+/H+ antiporter genes in Escherichia coli. Mol. Microbiol. 59: 651-663. 16390457
Rajendran VM., Nanda Kumar NS., Tse CM. and Binder HJ. (2015). Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis. J Biol Chem. 290(42):25487-96. 26350456
Reddy, T., J. Ding, X. Li, B.D. Sykes, J.K. Rainey, and L. Fliegel. (2008). Structural and Functional Characterization of Transmembrane Segment IX of the NHE1 Isoform of the Na+/H+ Exchanger. J. Biol. Chem. 283: 22018-22030. 18508767
Reilly, R.F., F. Hildebrandt, D. Biemesderfer, C. Sardet, J. Pouysségur, P.S. Aronson, C.W. Slayman, and P. Igarashi. (1991). cDNA cloning and immunolocalization of a Na+-H+ exchanger in LLC-PK1 renal epithelial cells. Am. J. Physiol. 261: F1088-F1094. 1661081
Resch, C.T., J.L. Winogrodzki, C.T. Patterson, E.J. Lind, M.J. Quinn, P. Dibrov, and C.C. Häse. (2010). The putative Na+/H+ antiporter of Vibrio cholerae, Vc-NhaP2, mediates the specific K+/H+ exchange in vivo. Biochemistry 49: 2520-2528. 20163190
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Sangan, P., V.M. Rajendran, J.P. Geibel, and H.J. Binder. (2002). Cloning and expression of a chloride-dependent Na+-H+ exchanger. J. Biol. Chem. 277: 9668-9675. 11773056
Seidler, U., A.K. Singh, A. Cinar, M. Chen, J. Hillesheim, B. Hogema, and B. Riederer. (2009). The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann. N.Y. Acad. Sci. 1165: 249-260. 19538313
Sharma, H., M. Taneja, and S.K. Upadhyay. (2020). Identification, characterization and expression profiling of cation-proton antiporter superfamily in Triticum aestivum L. and functional analysis of TaNHX4-B. Genomics 112: 356-370. 30818061
Sikora, J., J. Leddy, M. Gulinello, and S.U. Walkley. (2016). X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities. Dis Model Mech 9: 13-23. 26515654
Simonin A. and Fuster D. (2010). Nedd4-1 and beta-arrestin-1 are key regulators of Na+/H+ exchanger 1 ubiquitylation, endocytosis, and function. J Biol Chem. 285(49):38293-303. 20855896
Siyanov, V. and J.M. Baltz. (2013). NHE1 is the sodium-hydrogen exchanger active in acute intracellular pH regulation in preimplantation mouse embryos. Biol Reprod 88: 157. 23677982
Slepkov, E.R., S. Chow, M.J. Lemieux, and L. Fliegel. (2004). Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na+/H+ exchanger isoform 1. Biochem. J. 379: 31-38. 14680478
Song, A., J. Lu, J. Jiang, S. Chen, Z. Guan, W. Fang, and F. Chen. (2012). Isolation and characterisation of Chrysanthemum crassum SOS1, encoding a putative plasma membrane Na+ /H+ antiporter. Plant Biol (Stuttg) 14: 706-713. 22404736
Suleiman, M., N. Abdulrahman, H. Yalcin, and F. Mraiche. (2018). The role of CD44, hyaluronan and NHE1 in cardiac remodeling. Life Sci 209: 197-201. 30089233
Sze, H. and S. Chanroj. (2018). Plant Endomembrane Dynamics: Studies of K/H Antiporters Provide Insights on the Effects of pH and Ion Homeostasis. Plant Physiol. 177: 875-895. 29691301
Tsai, Y.T., C.Y. Lee, C.C. Chuang, H.J. Lin, C.H. Wu, Y.Z. Yang, C.S. Tsai, and S.H. Loh. (2015). Effects of Indomethacin on Intracellular pH and Na⁺/H⁺ Exchanger in the Human Monocytes. Chin J. Physiol. 58: 228-236. 26211646
Tse, C.M., A.I. Ma, V.W. Yang, A.J. Watson, S. Levine, M.H. Montrose, J. Potter, C.Sardet, J. Pouysségur, and M. Donowitz. (1991). Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J. 10: 1957-1967. 1712287
Tzeng, J., B.L. Lee, B.D. Sykes, and L. Fliegel. (2010). Structural and functional analysis of transmembrane segment VI of the NHE1 isoform of the Na+/H+ exchanger. J. Biol. Chem. 285: 36656-36665. 20843797
Ullah A., Kemp G., Lee B., Alves C., Young H., Sykes BD. and Fliegel L. (2013). Structural and functional analysis of transmembrane segment IV of the salt tolerance protein Sod2. J Biol Chem. 288(34):24609-24. 23836910
Uzdavinys, P., M. Coinçon, E. Nji, M. Ndi, I. Winkelmann, C. von Ballmoos, and D. Drew. (2017). Dissecting the proton transport pathway in electrogenic Na/H antiporters. Proc. Natl. Acad. Sci. USA 114: E1101-E1110. 28154142
Velázquez, D., V. Průša, G. Masrati, E. Yariv, H. Sychrova, N. Ben-Tal, and O. Zimmermannova. (2022). Allosteric links between the hydrophilic N-terminus and transmembrane core of human Na /H antiporter NHA2. Protein. Sci. 31: e4460. 36177733
Venema, K., F.J. Quintero, J.M. Pardo, and J.P. Donaire. (2002). The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J. Biol. Chem. 277: 2413-2418. 11707435
Verkhovskaya, M.L., B. Barquera, and M. Wikström. (2001). Deletion of one of two Escherichia coli genes encoding putative Na+/H+ exchangers (ycgO) perturbs cytoplasmic alkali cation balance at low osmolarity. Microbiology 147: 3005-3013. 11700351
Verma, D., S.L. Singla-Pareek, D. Rajagopal, M.K. Reddy, and S.K. Sopory. (2007). Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32: 621-628. 17536181
Waditee, R., T. Hibino, T. Nakamura, A. Incharoensakdi, and T. Takabe. (2002). Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc. Natl. Acad. Sci. USA 99: 4109-4114. 11891307
Waditee, R., T. Hibino, Y. Tanaka, T. Nakamura, A. Incharoensakdi, and T. Takabe. (2001). Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J. Biol. Chem. 276: 36931-36938. 11479290
Wakabayashi, S., T. Hisamitsu, and T.Y. Nakamura. (2013). Regulation of the cardiac Na+/H+ exchanger in health and disease. J Mol. Cell Cardiol 61: 68-76. 23429007
Wakabayashi, S., T. Pang, X. Su, and M. Shigekawa. (2000). A novel topology model of the human Na+/H+ exchanger isoform 1. J. Biol. Chem. 275: 7942-7949. 10713111
Wang, L. (2019). [Progress in endosomal Na⁺,K⁺/H⁺ antiporter in Arabidopsis thaliana]. Sheng Wu Gong Cheng Xue Bao 35: 1424-1432. 31441613
Wang, X., F. Xu, and S. Chen. (2013). Metagenomic cloning and characterization of Na⁺/H⁺ antiporter genes taken from sediments in Chaerhan Salt Lake in China. Biotechnol Lett 35: 619-624. 23247569
Wang, X., R. Yang, B. Wang, G. Liu, C. Yang, and Y. Cheng. (2011). Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 38: 4813-4822. 21153767
Wang, Y., C. Pan, Q. Chen, Q. Xie, Y. Gao, L. He, Y. Li, Y. Dong, X. Jiang, and Y. Zhao. (2023). Architecture and autoinhibitory mechanism of the plasma membrane Na/H antiporter SOS1 in Arabidopsis. Nat Commun 14: 4487. 37495621
Wang, Y., X. Tian, Z. Wang, D. Liu, X. Zhao, X. Sun, Z. Tu, Z. Li, Y. Zhao, S. Zheng, and J. Yao. (2024). A novel peptide encoded by circ-SLC9A6 promotes lipid dyshomeostasis through the regulation of H4K16ac-mediated CD36 transcription in NAFLD. Clin Transl Med 14: e1801. 39107881
Wei, Y., J. Liu, Y. Ma, and T.A. Krulwich. (2007). Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. Microbiology. 153: 2168-2179. 17600061
Wells, K.M. and R. Rao. (2001). The yeast Na+/H+ exchanger Nhx1 is an N-linked glycoprotein. J. Biol. Chem. 276: 3401-3407. 11036065
Wen, J., S. Chen, M. Bao, C. Hu, L. Wu, Y. Yong, X. Liu, Y. Li, Z. Yu, X. Ma, J.B. Eun, J.H. Shim, M. Warda, A.M. Abd El-Aty, and X. Ju. (2023). Slc9a1 plays a vital role in chitosan oligosaccharide transport across the intestinal mucosa of mice. Carbohydr Polym 299: 120179. 36876794
Wiebe, S.A., A. Plain, W. Pan, D. O''Neill, B. Braam, and R.T. Alexander. (2019). NHE8 attenuates calcium influx into NRK cells and the proximal tubule epithelium. Am. J. Physiol. Renal Physiol. [Epub: Ahead of Print] 31042050
Winklemann, I., R. Matsuoka, P.F. Meier, D. Shutin, C. Zhang, L. Orellana, R. Sexton, M. Landreh, C.V. Robinson, O. Beckstein, and D. Drew. (2020). Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9. EMBO. J. 39: e105908. 33118634
Wöhlert, D., W. Kühlbrandt, and O. Yildiz. (2014). Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. Elife 3: e03579. 25426802
Wong, K.Y., R. McKay, Y. Liu, K. Towle, Y. Elloumi, X. Li, S. Quan, D. Dutta, B.D. Sykes, and L. Fliegel. (2018). Diverse residues of intracellular loop 5 of the Na/H exchanger modulate proton sensing, expression, activity and targeting. Biochim. Biophys. Acta. [Epub: Ahead of Print] 30071192
Wu, L., M. Wu, H. Liu, Y. Gao, F. Chen, and Y. Xiang. (2021). Identification and characterisation of monovalent cation/proton antiporters (CPAs) in Phyllostachys edulis and the functional analysis of PheNHX2 in Arabidopsis thaliana. Plant Physiol. Biochem 164: 205-221. 34004558
Wu, Y., N. Ding, X. Zhao, M. Zhao, Z. Chang, J. Liu, and L. Zhang. (2007). Molecular characterization of PeSOS1: the putative Na+/H (+) antiporter of Populus euphratica. Plant Mol. Biol. 65: 1-11. 17605111
Wu, Y., S. Wang, W. Du, Y. Ding, W. Li, Y. Chen, Z. Zheng, and Y. Wang. (2023). Sugar transporter ZmSWEET1b is responsible for assimilate allocation and salt stress response in maize. Funct Integr Genomics 23: 137. 37093289
Xiang, M., M. Feng, S. Muend, and R. Rao. (2007). A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc. Natl. Acad. Sci. U.S.A. 104: 18677-186781. 18000046
Yan, J.J., M.Y. Chou, T. Kaneko, and P.P. Hwang. (2007). Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am. J. Physiol. Cell Physiol. 293: C1814-1823. 17913841
Yang, L., Y. Jin, W. Huang, Q. Sun, F. Liu, and X. Huang. (2018). Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. BMC Genomics 19: 717. 30261913
Yang, L.F., J.Q. Jiang, B.S. Zhao, B. Zhang, d.e.Q. Feng, W.D. Lu, L. Wang, and S.S. Yang. (2006). A Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus dabanensis D-8T: cloning and molecular characterization. FEMS Microbiol. Lett. 255: 89-95. 16436066
Yin, Y.L., H.H. Wang, Z.C. Gui, S. Mi, S. Guo, Y. Wang, Q.Q. Wang, R.Z. Yue, L.B. Lin, J.X. Fan, X. Zhang, B.Y. Mao, T.H. Liu, G.R. Wan, H.Q. Zhan, M.L. Zhu, L.H. Jiang, and P. Li. (2022). Citronellal Attenuates Oxidative Stress-Induced Mitochondrial Damage through TRPM2/NHE1 Pathway and Effectively Inhibits Endothelial Dysfunction in Type 2 Diabetes Mellitus. Antioxidants (Basel) 11:. 36421426
Yokoi, S., F.J. Quintero, B. Cubero, M.T. Ruiz, R.A. Bressan, P.M. Hasegawa, and J.M. Pardo. (2002). Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 30: 529-539. 12047628
Zhang, W., W. Fan, J. Guo, and X. Wang. (2022). Osmotic stress activates RIPK3/MLKL-mediated necroptosis by increasing cytosolic pH through a plasma membrane Na/H exchanger. Sci Signal 15: eabn5881. 35580168
Zhang, X.Y., L.H. Tang, J.W. Nie, C.R. Zhang, X. Han, Q.Y. Li, L. Qin, M.H. Wang, X. Huang, F. Yu, M. Su, Y. Wang, R.M. Xu, Y. Guo, Q. Xie, and Y.H. Chen. (2023). Structure and activation mechanism of the rice Salt Overly Sensitive 1 (SOS1) Na/H antiporter. Nat Plants 9: 1924-1936. 37884653
Zörb, C., A. Noll, S. Karl, K. Leib, F. Yan, and S. Schubert. (2005). Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J Plant Physiol. 162: 55-66. 15700421
Zou, Y.J., L.F. Yang, L. Wang, and S.S. Yang. (2008). Cloning and characterization of a Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus aidingensis AD-6T. J Microbiol 46: 415-421. 18758732