TCDB is operated by the Saier Lab Bioinformatics Group

2.A.40 The Nucleobase/Ascorbate Transporter (NAT) or Nucleobase:Cation Symporter-2 (NCS2) Family

The NCS2 family, also called the nucleobase/ascorbate transporter (NAT) family (Koukaki et al. 2005; Karatza et al., 2006), consists of over 1000 sequenced proteins derived from Gram-negative and Gram-positive bacteria, archaea, fungi, plants and animals. Of the five known families of transporters that act on nucleobases, it is the only one that is widespread (;(Gournas et al. 2008; Diallinas and Gournas 2013;  (Frillingos 2012).  Many functionally characterized members are specific for nucleobases including both purines and pyrimidines, but others are purine-specific. However, two closely related rat/mouse/human members of the family, SVCT1 and SVCT2, localized to different tissues of the body, cotransport L-ascorbate and Na+ with a high degree of specificity and high affinity for the vitamin (Diallinas and Gournas 2011). Clustering of NAT/NCS2 family members on the phylogenetic tree is complex with bacterial proteins and eukaryotic proteins each falling into at least three distinct clusters. The plant and animal proteins cluster loosely together, but the fungal proteins branch from one of the three bacterial clusters (Gournas et al. 2008). E. coli possesses four distantly related paralogous members of the NCS2 family.  Evidence that this family is a member of the APC superfamily has been presented (Wong et al. 2012). Members of this family have the UraA fold (Ferrada and Superti-Furga 2022).

Proteins of the NCS2 family are 414-650 amino acyl residues in length and probably possess 14 TMSs. Lu et al. (2011) have concluded from x-ray crystallography that UraA (2.A.40.1.1) has 14 TMSs with two 7 TMS inverted repeats. A pair of antiparallel β-strands is located between TMS 3 and TMS 10 and has an important role in structural organization and substrate recognition. The structure is spatially arranged into a core domain and a gate domain. Uracil, located at the interface between the two domains, is coordinated mainly by residues from the core domain. Structural analyses and relationships to other structurally members of the APC superfamily suggest that alternating access of the substrate may be achieved through conformational changes of the gate domain (Wong et al. 2012). 

The first 3-d structure of a eukaryotic NCS2 family member to be crystalized was that of UapA (Alguel et al. 2016).  This structure is similar to UraA, but additionally revealed that NATs dimerize and that the dimer is probably the functional unit. Dimerization appeared to be critical for specificity. Subsequent publications on UraA showed that this porter is also dimeric (Yu et al. 2017). Further analyses confirmed primary sequence comparitive data showing that the NCB2 family is a member of the APC superfamily (Vastermark et al. 2014). This conclusion has been further verified (Chang and Geertsma 2017).  The 7+7 TMS inverted repeat topology of UapA/UraA is also found in several transporters of the APC suprefamily with little primary amino acid sequence similarity with NATs, such as AzgA-like purine transporters (TC# 2.A.40.7.1), plant boron transporters Bor1-3 (e.g., TC# 2.A.31.3), the human Band3 anion exchanger (TC#2.A.31.1.1), and members of SulP transporter family (TC# 2.A.53). All these may be homodimeric transporters which seem to function via the so-called “elevator mechanism” of transport.

The generalized transport reactions catalyzed by proteins of the NAT/NCS2 are:

Nucleobase (out) +  H+ (out) → Nucleobase (in) + H+ (in)

Ascorbate (out) +  Na+ (out) → Ascorbate (in) +  Na+ (in).

This family belongs to the: APC Superfamily.

References associated with 2.A.40 family:

Alguel, Y., S. Amillis, J. Leung, G. Lambrinidis, S. Capaldi, N.J. Scull, G. Craven, S. Iwata, A. Armstrong, E. Mikros, G. Diallinas, A.D. Cameron, and B. Byrne. (2016). Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity. Nat Commun 7: 11336. 27088252
Amillis, S., V. Kosti, A. Pantazopoulou, E. Mikros, and G. Diallinas. (2011). Mutational analysis and modeling reveal functionally critical residues in transmembrane segments 1 and 3 of the UapA transporter. J. Mol. Biol. 411: 567-580. 21722649
Andersen, P.S., D. Frees, R. Fast and B. Mygind (1995). Uracil uptake in Escherichia coli K-12: Isolation of uraA mutants and cloning of the gene. J. Bacteriol. 177: 2008—2013. 7721693
Argyrou, E,. V. Sophianopoulou, N. Schultes, and G. Diallinas. (2001). Functional characterization of a maize purine transporter by expression in Aspergillus nidulans. Plant Cell. 13: 953-964. 11283348
Botou, M., P. Lazou, K. Papakostas, G. Lambrinidis, T. Evangelidis, E. Mikros, and S. Frillingos. (2018). Insight on specificity of uracil permeases of the NAT/NCS2 family from analysis of the transporter encoded in the pyrimidine utilization operon of Escherichia coli. Mol. Microbiol. 108: 204-219. 29437264
Brailoiu, E., R. Hooper, X. Cai, G.C. Brailoiu, M.V. Keebler, N.J. Dun, J.S. Marchant, and S. Patel. (2010). An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J. Biol. Chem. 285: 2897-2901. 19940116
Brynestad, S., L.A. Iwanejko, G.S. Stewart and P.E. Granum (1994). A complex array of Hpr consensus DNA recognition sequences proximal to the enterotoxin gene in Clostridium perfringens type A. Microbiol. 140: 97—104. 8162194
Bürzle, M., Y. Suzuki, D. Ackermann, H. Miyazaki, N. Maeda, B. Clémençon, R. Burrier, and M.A. Hediger. (2013). The sodium-dependent ascorbic acid transporter family SLC23. Mol Aspects Med 34: 436-454. 23506882
Chang, Y.N. and E.R. Geertsma. (2017). The novel class of seven transmembrane segment inverted repeat carriers. Biol Chem 398: 165-174. 27865089
Daruwala, R., J. Song, W.S. Koh, S.C. Rumsey, M. Levine (1999). Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 460: 480-484. 10556521
de Koning, H. and G. Diallinas (2000). Nucleobase transporters. Molec. Memb. Biol. 75:75-94.
Diallinas, G. and C. Gournas. (2013). Structure-function relationships in the nucleobase-ascorbate transporter (NAT) family: lessons from model microbial genetic systems. Channels (Austin) 2: 363-372. 18981714
Diallinas, G., J. Valdez, V. Sophianopoulou, A. Rosa and C. Scazzocchio (1998). Chimeric purine transporters of Aspergillus nidulans define a domain critical for function and specificity conserved in bacterial, plant and metazoan homologues. EMBO J. 17: 3827-3837. 9670000
Diallinas, G., L. Gorfinkiel, H.N. Arst, Jr., G. Cecchetto and C. Scazzocchio (1995). Genetic and molecular characterization of a gene encoding a wide specificity purine permease of Aspergillus nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes. J. Biol. Chem. 270: 8610—8622. 7721763
Dimakis, D., Y. Pyrris, and G. Diallinas. (2022). Transmembrane helices 5 and 12 control transport dynamics, substrate affinity and specificity in the elevator-type UapA transporter. Genetics. [Epub: Ahead of Print] 35894659
Ferrada, E. and G. Superti-Furga. (2022). A structure and evolutionary-based classification of solute carriers. iScience 25: 105096. 36164651
Frillingos, S. (2012). Insights to the evolution of Nucleobase-Ascorbate Transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ. Int J Biochem Mol Biol 3: 250-272. 23097742
Georgopoulou, E., G. Mermelekas, E. Karena, and S. Frillingos. (2010). Purine substrate recognition by the nucleobase-ascorbate transporter signature motif in the YgfO xanthine permease: ASN-325 binds and ALA-323 senses substrate. J. Biol. Chem. 285: 19422-19433. 20406814
Ghim, S.Y. and J. Neuhard (1994). The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease. J. Bacteriol. 176: 3698—3707. 8206848
Godoy, A., V. Ormazabal, G. Moraga-Cid, F.A. Zuniga, P. Sotomayor, V. Barra, O. Vasquez, V. Montecinos, L. Mardones, C. Guzman, M. Villagran, L.G. Aguayo, S.A. Onate, A.M. Reyes, J.G. Carcamo, C.I. Rivas, and J.C. Vera. (2007). Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2. Activation by sodium and absolute dependence on bivalent cations. J. Biol. Chem. 282: 615-624. 17012227
Gorfinkiel, L., G. Diallinas and C. Scazzocchio (1993). Sequence and regulation of the uapA gene encoding a uric acid-xanthine permease in the fungus Aspergillus nidulans. J. Biol. Chem. 268: 23376—23381. 8226862
Gournas, C., I. Papageorgiou, and G. Diallinas. (2008). The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role. Mol Biosyst 4: 404-416. 18414738
Hou, J., A. Renigunta, J. Yang, and S. Waldegger. (2010). Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc. Natl. Acad. Sci. USA 107: 18010-18015. 20921420
Jindal, S., L. Yang, P.J. Day, and D.B. Kell. (2019). Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by Escherichia coli. BMC Microbiol 19: 195. 31438868
Kalli, A.C., M.S. Sansom, and R.A. Reithmeier. (2015). Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin. PLoS Comput Biol 11: e1004123. 25729859
Karatza, P. and S. Frillingos. (2006). Cloning and functional characterization of two bacterial members of the NAT/NCS2 family in Escherichia coli. Mol. Membr. Biol. 22: 251-261. 16096267
Karatza, P., P. Panos, E. Georgopoulou, and S. Frillingos. (2006). Cysteine-scanning analysis of the nucleobase-ascorbate transporter signature motif in YgfO permease of Escherichia coli: Gln-324 and Asn-325 are essential, and Ile-329-Val-339 form an α-helix. J. Biol. Chem. 281: 39881-39890. 17077086
Karena, E. and S. Frillingos. (2011). The role of transmembrane segment TM3 in the xanthine permease XanQ of Escherichia coli. J. Biol. Chem. 286: 39595-39605. 21917919
Karena, E., E. Tatsaki, G. Lambrinidis, E. Mikros, and S. Frillingos. (2015). Analysis of conserved NCS2 motifs in the Escherichia coli xanthine permease XanQ. Mol. Microbiol. 98: 502-517. 26192456
Kim, K.S., J.G. Pelton, W.B. Inwood, U. Andersen, S. Kustu, and D.E. Wemmer. (2010). The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J. Bacteriol. 192: 4089-4102. 20400551
Kosti, V., G. Lambrinidis, V. Myrianthopoulos, G. Diallinas, and E. Mikros. (2012). Identification of the Substrate Recognition and Transport Pathway in a Eukaryotic Member of the Nucleobase-Ascorbate Transporter (NAT) Family. PLoS One 7: e41939. 22848666
Kosti, V., I. Papageorgiou, and G. Diallinas. (2010). Dynamic elements at both cytoplasmically and extracellularly facing sides of the UapA transporter selectively control the accessibility of substrates to their translocation pathway. J. Mol. Biol. 397: 1132-1143. 20188741
Koukaki, M., A. Vlanti, S. Goudela, A. Pantazopoulou, H. Gioule, S. Tournaviti, and G. Diallinas. (2005). The nucleobase-ascorbate transporter (NAT) signature motif in UapA defines the function of the purine translocation pathway. J. Mol. Biol. 350: 499-513. 15953615
Kourkoulou, A., P. Grevias, G. Lambrinidis, E. Pyle, M. Dionysopoulou, A. Politis, E. Mikros, B. Byrne, and G. Diallinas. (2019). Specific Residues in a Purine Transporter Are Critical for Dimerization, ER-Exit and Function. Genetics. [Epub: Ahead of Print] 31611232
Kozmin, S.G., E.I. Stepchenkova, S.C. Chow, and R.M. Schaaper. (2013). A critical role for the putative NCS2 nucleobase permease YjcD in the sensitivity of Escherichia coli to cytotoxic and mutagenic purine analogs. MBio 4: e661-66113. 24169576
Krypotou E., Lambrinidis G., Evangelidis T., Mikros E. and Diallinas G. (2014). Modelling, substrate docking and mutational analysis identify residues essential for function and specificity of the major fungal purine transporter AzgA. Mol Microbiol. 93(1):129-45. 24818808
Krypotou, E. and G. Diallinas. (2014). Transport assays in filamentous fungi: kinetic characterization of the UapC purine transporter of Aspergillus nidulans. Fungal Genet Biol 63: 1-8. 24355588
Loh, K.D., P. Gyaneshwar, E. Markenscoff Papadimitriou, R. Fong, K.S. Kim, R. Parales, Z. Zhou, W. Inwood, and S. Kustu. (2006). A previously undescribed pathway for pyrimidine catabolism. Proc. Natl. Acad. Sci. USA 103: 5114-5119. 16540542
Lu, F., S. Li, Y. Jiang, J. Jiang, H. Fan, G. Lu, D. Deng, S. Dang, X. Zhang, J. Wang, and N. Yan. (2011). Structure and mechanism of the uracil transporter UraA. Nature 472: 243-246. 21423164
Mackenzie, B., A.C. Illing, and M.A. Hediger. (2008). Transport model of the human Na+-coupled L-ascorbic acid (vitamin C) transporter SVCT1. Am. J. Physiol. Cell Physiol. 294: C451-459. 18094143
Martinussen, J., J. Schallert, B. Andersen, and K. Hammer. (2001). The pyrimidine operon pyrRPB-carA from Lactococcus lactis. J. Bacteriol. 183: 2785-2794. 11292797
Martzoukou O., Karachaliou M., Yalelis V., Leung J., Byrne B., Amillis S. and Diallinas G. (2015). Oligomerization of the UapA Purine Transporter Is Critical for ER-Exit, Plasma Membrane Localization and Turnover. J Mol Biol. 427(16):2679-96. 26049015
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Ohkura, N., K. Yoshiba, N. Yoshiba, N. Edanami, H. Ohshima, S. Takenaka, and Y. Noiri. (2023). SVCT2-GLUT1-mediated ascorbic acid transport pathway in rat dental pulp and its effects during wound healing. Sci Rep 13: 1251. 36690706
Papageorgiou, I., C. Gournas, A. Vlanti, S. Amillis, A. Pantazopoulou, and G. Diallinas. (2008). Specific interdomain synergy in the UapA transporter determines its unique specificity for uric acid among NAT carriers. J. Mol. Biol. 382: 1121-1135. 18718842
Papakostas, K. and S. Frillingos. (2012). Substrate selectivity of YgfU, a uric acid transporter from Escherichia coli. J. Biol. Chem. 287: 15684-15695. 22437829
Papakostas, K., E. Georgopoulou, and S. Frillingos. (2008). Cysteine-scanning analysis of putative helix XII in the YgfO xanthine permease: ILE-432 and ASN-430 are important. J. Biol. Chem. 283: 13666-13678. 18359771
Papakostas, K., M. Botou, and S. Frillingos. (2013). Functional identification of the hypoxanthine/guanine transporters YjcD and YgfQ and the adenine transporters PurP and YicO of Escherichia coli K-12. J. Biol. Chem. 288: 36827-36840. 24214977
Quinn, C.L., B.T. Stephenson and R.L. Switzer (1991). Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J. Biol. Chem. 266: 9113—9127. 1709162
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi and G.B. Young (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Scheers NM. and Sandberg AS. (2011). Iron regulates the uptake of ascorbic acid and the expression of sodium-dependent vitamin C transporter 1 (SVCT1) in human intestinal Caco-2 cells. Br J Nutr. 105(12):1734-40. 21418708
Schultz, A.C., P. Nygaard, and H.H. Saxild. (2001). Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J. Bacteriol. 183: 3293-3302. 11344136
Tatsaki, E., E. Anagnostopoulou, I. Zantza, P. Lazou, E. Mikros, and S. Frillingos. (2021). Identification of New Specificity Determinants in Bacterial Purine Nucleobase Transporters based on an Ancestral Sequence Reconstruction Approach. J. Mol. Biol. 433: 167329. [Epub: Ahead of Print] 34710398
Tessi, T.M., V.G. Maurino, M. Shahriari, E. Meissner, O. Novak, T. Pasternak, B.S. Schumacher, F. Ditengou, Z. Li, J. Duerr, N.S. Flubacher, M. Nautscher, A. Williams, Z. Kazimierczak, M. Strnad, J.O. Thumfart, K. Palme, M. Desimone, and W.D. Teale. (2023). AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response. New Phytol. [Epub: Ahead of Print] 36918499
Tsukaguchi, H., T. Tokui, B. Mackenzie, U.V. Berger, X.Z. Chen, Y. Wang, R.F. Brubaker, and M.A. Hediger. (1999). A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 399: 70-75. 10331392
Turner, R.J., Y. Lu and R.L. Switzer (1994). Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. J. Bacteriol. 176: 3708—3722. 8206849
Vastermark, A., S. Wollwage, M.E. Houle, R. Rio, and M.H. Saier, Jr. (2014). Expansion of the APC superfamily of secondary carriers. Proteins 82: 2797-2811. 25043943
Vlanti, A., S. Amillis, M. Koukaki, and G. Diallinas. (2006). A novel-type substrate-selectivity filter and ER-exit determinants in the UapA purine transporter. J. Mol. Biol. 357: 808-819. 16464466
Wong, F.H., J.S. Chen, V. Reddy, J.L. Day, M.A. Shlykov, S.T. Wakabayashi, and M.H. Saier, Jr. (2012). The amino acid-polyamine-organocation superfamily. J. Mol. Microbiol. Biotechnol. 22: 105-113. 22627175
Yamamoto, S., K. Inoue, T. Murata, S. Kamigaso, T. Yasujima, J.Y. Maeda, Y. Yoshida, K.Y. Ohta, and H. Yuasa. (2010). Identification and functional characterization of the first nucleobase transporter in mammals: implication in the species difference in the intestinal absorption mechanism of nucleobases and their analogs between higher primates and other mammals. J. Biol. Chem. 285: 6522-6531. 20042597
Yasujima, T., C. Murata, Y. Mimura, T. Murata, M. Ohkubo, K. Ohta, K. Inoue, and H. Yuasa. (2018). Urate transport function of rat sodium-dependent nucleobase transporter 1. Physiol Rep 6: e13714. 29845779
Yu, X., G. Yang, C. Yan, J.L. Baylon, J. Jiang, H. Fan, G. Lu, K. Hasegawa, H. Okumura, T. Wang, E. Tajkhorshid, S. Li, and N. Yan. (2017). Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res 27: 1020-1033. 28621327