| |
---|---|
Accession Number: | P50443 |
Protein Name: | DTD aka SLC26A2 aka DTDST |
Length: | 739 |
Molecular Weight: | 81662.00 |
Species: | Homo sapiens (Human) [9606] |
Number of TMSs: | 11 |
Location1 / Topology2 / Orientation3: | Membrane1 / Multi-pass membrane protein2 |
Substrate | chloride, sulfate, hydroxide |
Cross database links:
RefSeq: | NP_000103.2 |
---|---|
Entrez Gene ID: | 1836 |
Pfam: | PF01740 PF00916 |
OMIM: |
222600 phenotype 226900 phenotype 256050 phenotype 600972 phenotype 606718 gene |
KEGG: | hsa:1836 hsa:1836 |
Gene Ontology
GO:0005887
C:integral to plasma membrane
GO:0005624
C:membrane fraction
GO:0008271
F:secondary active sulfate transmembrane tran...
GO:0008272
P:sulfate transport
GO:0055085
P:transmembrane transport
GO:0008271
F:secondary active sulfate transmembrane transporter activity
GO:0015116
F:sulfate transmembrane transporter activity
GO:0001503
P:ossification
| |
References (23)[1] “The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping.” Haestbacka J.et.al. 7923357 [2] “Complete sequencing and characterization of 21,243 full-length human cDNAs.” Ota T.et.al. 14702039 [3] “The DNA sequence and comparative analysis of human chromosome 5.” Schmutz J.et.al. 15372022 [4] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).” The MGC Project Teamet.al. 15489334 [5] “The full-ORF clone resource of the German cDNA consortium.” Bechtel S.et.al. 17974005 [6] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.” Olsen J.V.et.al. 17081983 [7] “A quantitative atlas of mitotic phosphorylation.” Dephoure N.et.al. 18669648 [8] “Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene.” Superti-Furga A.et.al. 8528239 [9] “Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias.” Haestbacka J.et.al. 8571951 [10] “Homozygosity for a novel DTDST mutation in a child with a 'broad bone-platyspondylic' variant of diastrophic dysplasia.” Megarbane A.et.al. 10466420 [11] “Autosomal recessive multiple epiphyseal dysplasia with homozygosity for C653S in the DTDST gene: double-layer patella as a reliable sign.” Maekitie O.et.al. 12966518 [12] “The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping.” Haestbacka J.et.al. 7923357 [13] “Complete sequencing and characterization of 21,243 full-length human cDNAs.” Ota T.et.al. 14702039 [14] “The DNA sequence and comparative analysis of human chromosome 5.” Schmutz J.et.al. 15372022 [15] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).” The MGC Project Teamet.al. 15489334 [16] “The full-ORF clone resource of the German cDNA consortium.” Bechtel S.et.al. 17974005 [17] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.” Olsen J.V.et.al. 17081983 [18] “A quantitative atlas of mitotic phosphorylation.” Dephoure N.et.al. 18669648 [19] “Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene.” Superti-Furga A.et.al. 8528239 [20] “Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias.” Haestbacka J.et.al. 8571951 [21] “Homozygosity for a novel DTDST mutation in a child with a 'broad bone-platyspondylic' variant of diastrophic dysplasia.” Megarbane A.et.al. 10466420 [22] “Autosomal recessive multiple epiphyseal dysplasia with homozygosity for C653S in the DTDST gene: double-layer patella as a reliable sign.” Maekitie O.et.al. 12966518 [23] “Pseudoachondroplasia and multiple epiphyseal dysplasia: A 7-year comprehensive analysis of the known disease genes identify novel and recurrent mutations and provides an accurate assessment of their relative contribution.” Jackson G.C.et.al. 21922596
|
External Searches:
|
Analyze:
Predict TMSs (Predict number of transmembrane segments) | ||||
FASTA formatted sequence |
|
1: MSSESKEQHN VSPRDSAEGN DSYPSGIHLE LQRESSTDFK QFETNDQCRP YHRILIERQE 61: KSDTNFKEFV IKKLQKNCQC SPAKAKNMIL GFLPVLQWLP KYDLKKNILG DVMSGLIVGI 121: LLVPQSIAYS LLAGQEPVYG LYTSFFASII YFLLGTSRHI SVGIFGVLCL MIGETVDREL 181: QKAGYDNAHS APSLGMVSNG STLLNHTSDR ICDKSCYAIM VGSTVTFIAG VYQVAMGFFQ 241: VGFVSVYLSD ALLSGFVTGA SFTILTSQAK YLLGLNLPRT NGVGSLITTW IHVFRNIHKT 301: NLCDLITSLL CLLVLLPTKE LNEHFKSKLK APIPIELVVV VAATLASHFG KLHENYNSSI 361: AGHIPTGFMP PKVPEWNLIP SVAVDAIAIS IIGFAITVSL SEMFAKKHGY TVKANQEMYA 421: IGFCNIIPSF FHCFTTSAAL AKTLVKESTG CHTQLSGVVT ALVLLLVLLV IAPLFYSLQK 481: SVLGVITIVN LRGALRKFRD LPKMWSISRM DTVIWFVTML SSALLSTEIG LLVGVCFSIF 541: CVILRTQKPK SSLLGLVEES EVFESVSAYK NLQIKPGIKI FRFVAPLYYI NKECFKSALY 601: KQTVNPILIK VAWKKAAKRK IKEKVVTLGG IQDEMSVQLS HDPLELHTIV IDCSAIQFLD 661: TAGIHTLKEV RRDYEAIGIQ VLLAQCNPTV RDSLTNGEYC KKEEENLLFY SVYEAMAFAE 721: VSKNQKGVCV PNGLSLSSD