TCDB is operated by the Saier Lab Bioinformatics Group

8.A.58 The Dispanin (Dispanin) Family 

The IFN-induced antiviral proteins disrupt intracellular cholesterol homeostasis and inhibit the entry of viruses to the host cell cytoplasm by preventing viral fusion with cholesterol depleted endosomes. They may inactivate new enveloped viruses and are active against multiple viruses, including influenza A virus, SARS coronavirus (SARS-CoV), Marburg virus (MARV), Ebola virus (EBOV), Dengue virus (DNV), West Nile virus (WNV), human immunodeficiency virus type 1 (HIV-1), herpes virus and vesicular stomatitis virus (VSV). They can inhibit influenza virus hemagglutinin protein-mediated viral entry, MARV and EBOV GP1,2-mediated viral entry, SARS-CoV S protein-mediated viral entry and VSV G protein-mediated viral entry (Narayana et al. 2015). They also play critical roles in the structural stability and function of vacuolar ATPases (v-ATPases) by establishing physical contact with the v-ATPase of endosomes which is required for the function of the V-ATPase to lower the pH in phagocytic endosomes, thus establishing an antiviral state (Kim et al. 2012). A 2 TMS domain in these proteins may be related to those in family 8.A.115 (preliminary observation).

Interferon-induced transmembrane (2 TMSs) proteins (IFITMs), collectively called dispanins, broadly inhibit virus infections, particularly at the viral entry level. However, despite this shared ability to inhibit fusion, IFITMs differ in the potency and breadth of viruses restricted. Differences in the range of viruses restricted by IFITM1 are regulated by a C-terminal non-canonical dibasic sorting signal KRXX that suppresses restriction of some viruses by governing its intracellular distribution (Li et al. 2015).  Replacing the two basic residues with alanine (KR/AA) increased restriction of jaagsiekte sheep retrovirus and 10A1 amphotropic murine leukemia virus. Deconvolution microscopy revealed an altered subcellular distribution for KR/AA, with fewer molecules in LAMP1-positive lysosomes balanced by increased levels in CD63-positive multivesicular bodies, where jaagsiekte sheep retrovirus pseudovirions are colocalized. IFITM1 binds to cellular adaptor protein complex 3 (AP-3), an association that is lost when the dibasic motif is altered. Although knockdown of AP-3 itself decreases some virus entry, expression of parental IFITM1, but not its KR/AA mutant, potentiates inhibition of viral infections in AP-3 knockdown cells. IFITM1 adopts more than one membrane topology co-existing in cellular membranes. Because the C-terminal dibasic sorting signal is unique to human IFITM1, a species- and virus-specific antiviral effect of IFITMs may be novel and unique (Li et al. 2015). IFITM proteins broadly inhibit the entry of diverse pathogenic viruses, including Influenza A virus (IAV), Zika virus, HIV-1, and SARS coronaviruses by inhibiting virus-cell membrane fusion (Rahman et al. 2022).

Modulation of AMPA receptor (AMPAR) contents at synapses is thought to be an underlying molecular mechanism of memory and learning. AMPAR content at synapses is highly plastic and is regulated by numerous AMPAR accessory transmembrane proteins such as TARPs, cornichons, and CKAMPs. SynDIG (synapse differentiation-induced gene) defines a family of four genes (SynDIG1-4) expressed in distinct and overlapping patterns in the brain (Kirk et al. 2016). SynDIG1 is a transmembrane AMPAR-associated protein that regulates synaptic strength. The related protein, SynDIG4, [also known as Prrt1 (proline-rich transmembrane protein 1)] is a component of AMPAR complexes, but SynDIG1 and SynDIG4 have distinct yet overlapping patterns of expression in the central nervous system, with SynDIG4 having especially prominent expression in the hippocampus and particularly within CA1. In contrast to SynDIG1 and other traditional AMPAR auxiliary subunits, SynDIG4 is de-enriched at the postsynaptic density and colocalizes with extrasynaptic GluA1 puncta in primary dissociated neuronal cultures. Thus, although SynDIG4 shares sequence similarity with SynDIG1, it may act through a different mechanism as an auxiliary factor for extrasynaptic GluA1-containing AMPARs (Kirk et al. 2016).

References associated with 8.A.58 family:

Ahi, Y.S., D. Yimer, G. Shi, S. Majdoul, K. Rahman, A. Rein, and A.A. Compton. (2020). IFITM3 Reduces Retroviral Envelope Abundance and Function and Is Counteracted by glycoGag. mBio 11:. 31964738
Amini-Bavil-Olyaee, S., Y.J. Choi, J.H. Lee, M. Shi, I.C. Huang, M. Farzan, and J.U. Jung. (2013). The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe 13: 452-464. 23601107
Binda, F., P. Valente, A. Marte, P. Baldelli, and F. Benfenati. (2021). Increased responsiveness at the cerebellar input stage in the PRRT2 knockout model of paroxysmal kinesigenic dyskinesia. Neurobiol Dis 152: 105275. [Epub: Ahead of Print] 33515674
Brass, A.L., I.C. Huang, Y. Benita, S.P. John, M.N. Krishnan, E.M. Feeley, B.J. Ryan, J.L. Weyer, L. van der Weyden, E. Fikrig, D.J. Adams, R.J. Xavier, M. Farzan, and S.J. Elledge. (2009). The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139: 1243-1254. 20064371
Döring, J.H., A. Saffari, T. Bast, K. Brockmann, L. Ehrhardt, W. Fazeli, W.G. Janzarik, A. Klabunde-Cherwon, G. Kluger, H. Muhle, M. Pendziwiat, R.S. Møller, K. Platzer, J.L. Santos, J. Schröter, G.F. Hoffmann, S. Kölker, and S. Syrbe. (2022). Efficacy, Tolerability, and Retention of Antiseizure Medications in -Associated Infantile Epilepsy. Neurol Genet 8: e200020. 36187725
Dίaz, E. (2021). Beyond the AMPA receptor: Diverse roles of SynDIG/PRRT brain-specific transmembrane proteins at excitatory synapses. Curr Opin Pharmacol 58: 76-82. 33964729
Erro, R., K.P. Bhatia, A.J. Espay, and P. Striano. (2017). The epileptic and nonepileptic spectrum of paroxysmal dyskinesias: Channelopathies, synaptopathies, and transportopathies. Mov Disord. [Epub: Ahead of Print] 28090678
Feng, H.Y., F. Qiao, J. Tan, X. Zhang, P. Hu, Y.S. Shi, and Z. Xu. (2022). Proline-rich transmembrane protein 2 specifically binds to GluA1 but has no effect on AMPA receptor-mediated synaptic transmission. J Clin Lab Anal 36: e24196. 34997978
Ferrante, D., B. Sterlini, C. Prestigio, A. Marte, A. Corradi, F. Onofri, G. Tortarolo, G. Vicidomini, A. Petretto, J. Muià, A. Thalhammer, P. Valente, L.A. Cingolani, F. Benfenati, and P. Baldelli. (2021). PRRT2 modulates presynaptic Ca influx by interacting with P/Q-type channels. Cell Rep 35: 109248. 34133925
Franchi, F., A. Marte, B. Corradi, B. Sterlini, G. Alberini, A. Romei, A. De Fusco, A. Vogel, L. Maragliano, P. Baldelli, A. Corradi, P. Valente, and F. Benfenati. (2023). The intramembrane COOH-terminal domain of PRRT2 regulates voltage-dependent Na channels. J. Biol. Chem. 104632. [Epub: Ahead of Print] 36958475
Fruscione, F., P. Valente, B. Sterlini, A. Romei, S. Baldassari, M. Fadda, C. Prestigio, G. Giansante, J. Sartorelli, P. Rossi, A. Rubio, A. Gambardella, T. Nieus, V. Broccoli, A. Fassio, P. Baldelli, A. Corradi, F. Zara, and F. Benfenati. (2018). PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain. [Epub: Ahead of Print] 29554219
Gómez-Herranz, M., J. Faktor, M. Yébenes Mayordomo, M. Pilch, M. Nekulova, L. Hernychova, K.L. Ball, B. Vojtesek, T.R. Hupp, and S. Kote. (2022). Emergent Role of IFITM1/3 towards Splicing Factor (SRSF1) and Antigen-Presenting Molecule (HLA-B) in Cervical Cancer. Biomolecules 12:. 36008984
Ishikawa-Sasaki, K., T. Murata, and J. Sasaki. (2023). IFITM1 enhances nonenveloped viral RNA replication by facilitating cholesterol transport to the Golgi. PLoS Pathog 19: e1011383. 37252940
Jeong, S.U., J.M. Park, S.Y. Yoon, H.S. Hwang, H. Go, D.M. Shin, H. Ju, C.O. Sung, J.L. Lee, G. Jeong, and Y.M. Cho. (2024). IFITM3-mediated activation of TRAF6/MAPK/AP-1 pathways induces acquired TKI resistance in clear cell renal cell carcinoma. Investig Clin Urol 65: 84-93. 38197755
Ji, F., Q. Ke, K. Wang, and B.Y. Luo. (2021). Exercise test for patients with new-onset paroxysmal kinesigenic dyskinesia. Neurol Sci. [Epub: Ahead of Print] 33661484
Kim, B.S., H.J. Kim, J.S. Kim, Y.O. You, H. Zadeh, H.I. Shin, S.J. Lee, Y.J. Park, T. Takata, S.H. Pi, J. Lee, and H.K. You. (2012). IFITM1 increases osteogenesis through Runx2 in human alveolar-derived bone marrow stromal cells. Bone 51: 506-514. 22634173
Kirk, L.M., S.W. Ti, H.I. Bishop, M. Orozco-Llamas, M. Pham, J.S. Trimmer, and E. Díaz. (2016). Distribution of the SynDIG4/proline-rich transmembrane protein 1 in rat brain. J Comp Neurol 524: 2266-2280. 26660156
Klein, S., G. Golani, F. Lolicato, C. Lahr, D. Beyer, A. Herrmann, M. Wachsmuth-Melm, N. Reddmann, R. Brecht, M. Hosseinzadeh, A. Kolovou, J. Makroczyova, S. Peterl, M. Schorb, Y. Schwab, B. Brügger, W. Nickel, U.S. Schwarz, and P. Chlanda. (2023). IFITM3 blocks influenza virus entry by sorting lipids and stabilizing hemifusion. Cell Host Microbe 31: 616-633.e20. 37003257
Landolfi, A., P. Barone, and R. Erro. (2021). The Spectrum of -Associated Disorders: Update on Clinical Features and Pathophysiology. Front Neurol 12: 629747. 33746883
Leandro, D.B., R. Celerino da Silva, J.K.F. Rodrigues, M.C.G. Leite, L.C. Arraes, A.V.C. Coelho, S. Crovella, L. Zupin, and R.L. Guimarães. (2023). Clinical-Epidemiological Characteristics and (rs12252) Variant Involvement in HIV-1 Mother-to-Children Transmission Susceptibility in a Brazilian Population. Life (Basel) 13:. 36836754
Li, K., R. Jia, M. Li, Y.M. Zheng, C. Miao, Y. Yao, H.L. Ji, Y. Geng, W. Qiao, L.M. Albritton, C. Liang, and S.L. Liu. (2015). A sorting signal suppresses IFITM1 restriction of viral entry. J. Biol. Chem. 290: 4248-4259. 25527505
Liu, X.R., D. Huang, J. Wang, Y.F. Wang, H. Sun, B. Tang, W. Li, J.X. Lai, N. He, M. Wu, T. Su, H. Meng, Y.W. Shi, B.M. Li, B.S. Tang, and W.P. Liao. (2016). Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene. Neurol Genet 2: e66. 27123484
López-Jiménez, J.J., D.I. Peña-Iñiguez, A.L. Fletes-Rayas, S.E. Flores-Martínez, J. Sánchez-Corona, R.C. Rosales-Gomez, and H. Montoya-Fuentes. (2018). Distribution of IFITM3 polymorphism (dbSNP: rs12252) in mestizo populations in four states of Mexico. Int J Immunogenet. [Epub: Ahead of Print] 29575524
Lu, B., S.S. Lou, R.S. Xu, D.L. Kong, R.J. Wu, J. Zhang, L. Zhuang, X.M. Wu, J.Y. He, Z.Y. Wu, and Z.Q. Xiong. (2021). Cerebellar spreading depolarization mediates paroxysmal movement disorder. Cell Rep 36: 109743. 34551285
McMichael, T.M., L. Zhang, M. Chemudupati, J.C. Hach, A.D. Kenney, H.C. Hang, and J.S. Yount. (2017). The palmitoyltransferase ZDHHC20 enhances interferon-induced transmembrane protein 3 (IFITM3) palmitoylation and antiviral activity. J. Biol. Chem. 292: 21517-21526. 29079573
Narayana, S.K., K.J. Helbig, E.M. McCartney, N.S. Eyre, R.A. Bull, A. Eltahla, A.R. Lloyd, and M.R. Beard. (2015). The Interferon-induced Transmembrane Proteins, IFITM1, IFITM2, and IFITM3 Inhibit Hepatitis C Virus Entry. J. Biol. Chem. 290: 25946-25959. 26354436
Palatini, M., S.F. Müller, M. Kirstgen, S. Leiting, F. Lehmann, L. Soppa, N. Goldmann, C. Müller, K.A.A.T. Lowjaga, J. Alber, G. Ciarimboli, J. Ziebuhr, D. Glebe, and J. Geyer. (2022). IFITM3 Interacts with the HBV/HDV Receptor NTCP and Modulates Virus Entry and Infection. Viruses 14:. 35458456
Rahman, K., S.A.K. Datta, A.H. Beaven, A.A. Jolley, A.J. Sodt, and A.A. Compton. (2022). Cholesterol Binds the Amphipathic Helix of IFITM3 and Regulates Antiviral Activity. J. Mol. Biol. 434: 167759. [Epub: Ahead of Print] 35872070
Robertson, L., T. Featherby, S. Howell, J. Hughes, and P. Thomas. (2019). Paroxysmal and cognitive phenotypes in Prrt2 mutant mice. Genes Brain Behav e12566. [Epub: Ahead of Print] 30884140
Rossi, P., B. Sterlini, E. Castroflorio, A. Marte, F. Onofri, F. Valtorta, L. Maragliano, A. Corradi, and F. Benfenati. (2016). A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2): HINTS FOR AN INTRACELLULAR FUNCTION AT THE SYNAPSE. J. Biol. Chem. 291: 6111-6123. 26797119
Shi, G., A.D. Kenney, E. Kudryashova, A. Zani, L. Zhang, K.K. Lai, L. Hall-Stoodley, R.T. Robinson, D.S. Kudryashov, A.A. Compton, and J.S. Yount. (2021). Opposing activities of IFITM proteins in SARS-CoV-2 infection. EMBO. J. 40: e106501. 33270927
Shi, G., S. Ozog, B.E. Torbett, and A.A. Compton. (2018). mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3. Proc. Natl. Acad. Sci. USA 115: E10069-E10078. 30301809
Shi, Y., L. Du, D. Lv, H. Li, J. Shang, J. Lu, L. Zhou, L. Bai, and H. Tang. (2019). Exosomal Interferon-Induced Transmembrane Protein 2 Transmitted to Dendritic Cells Inhibits Interferon Alpha Pathway Activation and Blocks Anti-Hepatitis B Virus Efficacy of Exogenous Interferon Alpha. Hepatology 69: 2396-2413. 30723923
Spence, J.S., R. He, H.H. Hoffmann, T. Das, E. Thinon, C.M. Rice, T. Peng, K. Chandran, and H.C. Hang. (2019). IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat Chem Biol 15: 259-268. 30643282
Sterlini, B., F. Franchi, L. Morinelli, B. Corradi, C. Parodi, M. Albini, A. Bianchi, A. Marte, P. Baldelli, G. Alberini, L. Maragliano, P. Valente, F. Benfenati, and A. Corradi. (2023). Missense mutations in the membrane domain of PRRT2 affect its interaction with Nav1.2 voltage-gated sodium channels. Neurobiol Dis 183: 106177. [Epub: Ahead of Print] 37271286
Suddala, K.C., C.C. Lee, P. Meraner, M. Marin, R.M. Markosyan, T.M. Desai, F.S. Cohen, A.L. Brass, and G.B. Melikyan. (2019). Interferon-induced transmembrane protein 3 blocks fusion of sensitive but not resistant viruses by partitioning into virus-carrying endosomes. PLoS Pathog 15: e1007532. 30640957
Sun, Y., C. Zhang, Q. Fang, W. Zhang, and W. Liu. (2023). Abnormal signal pathways and tumor heterogeneity in osteosarcoma. J Transl Med 21: 99. 36759884
Troyano-Rodriguez, E., S. Mann, R. Ullah, and M. Ahmad. (2019). PRRT1 regulates basal and plasticity-induced AMPA receptor trafficking. Mol. Cell Neurosci 98: 155-163. [Epub: Ahead of Print] 31216424
Winkler, M., F. Wrensch, P. Bosch, M. Knoth, M. Schindler, S. Gärtner, and S. Pöhlmann. (2019). Analysis of IFITM-IFITM Interactions by a Flow Cytometry-Based FRET Assay. Int J Mol Sci 20:. 31398796
Wu, X., J.S. Spence, T. Das, X. Yuan, C. Chen, Y. Zhang, Y. Li, Y. Sun, K. Chandran, H.C. Hang, and T. Peng. (2020). Site-Specific Photo-Crosslinking Proteomics Reveal Regulation of IFITM3 Trafficking and Turnover by VCP/p97 ATPase. Cell Chem Biol 27: 571-585.e6. 32243810
Zang, R., J.B. Case, E. Yutuc, X. Ma, S. Shen, M.F. Gomez Castro, Z. Liu, Q. Zeng, H. Zhao, J. Son, P.W. Rothlauf, A.J.B. Kreutzberger, G. Hou, H. Zhang, S. Bose, X. Wang, M.D. Vahey, K. Mani, W.J. Griffiths, T. Kirchhausen, D.H. Fremont, H. Guo, A. Diwan, Y. Wang, M.S. Diamond, S.P.J. Whelan, and S. Ding. (2020). Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc. Natl. Acad. Sci. USA 117: 32105-32113. 33239446
Zhao, Q., Y. Hu, Z. Liu, S. Fang, F. Zheng, X. Wang, F. Li, X. Li, and Z. Lin. (2021). PRRT2 variants and effectiveness of various antiepileptic drugs in self-limited familial infantile epilepsy. Seizure 91: 360-368. [Epub: Ahead of Print] 34298454
Zhong, L., Y. Song, F. Marziali, R. Uzbekov, X.N. Nguyen, C. Journo, P. Roingeard, and A. Cimarelli. (2022). A novel domain within the CIL regulates egress of IFITM3 from the Golgi and reveals a regulatory role of IFITM3 on the secretory pathway. Life Sci Alliance 5:. 35396335