TCDB is operated by the Saier Lab Bioinformatics Group

9.A.14 The G-protein-coupled receptor (GPCR) Family

G protein-coupled receptors (GPCRs) constitute a large family involved in various types of signal transduction pathways triggered by hormones, odorants, peptides, proteins, and other types of ligands. The family is so diverse that many members lack apparent sequence similarity, although they all span the cell membrane seven times with an extracellular N- and a cytosolic C-terminus. Structure clustering of the predicted models for the 907 human GPCRs (5% of the total proteins encoded by the genome) suggests that GPCRs with similar structures tend to belong to a similar functional class, even when their sequences are diverse (Zhang et al. 2006). Wistrand et al. (2006) analyzed a divergent set of GPCRs and found distinct loop length patterns and differences in amino acid composition between cytosolic loops, extracellular loops, and membrane regions.  Multiple high resolution GPCR structures have confirmed some features predicted by the original rhodopsin-based models, and they reveal ligand-binding modes and critical aspects of the receptor activation process (Audet and Bouvier 2012).  At least some members of this family (e.g., 9.A.14.7.3) and at least some of the ionotropic ligand binding receptors (e.g., LIC; TC# 1.A.10.1.10) share an ANF receptor family ligand binding region/domain (M. Saier, unpublished observation). Interestingly, class A GPCRs appear to harness the energy of the transmembrane sodium potential to increase their sensitivity and selectivity (Shalaeva et al. 2019). This suggests, but does not prove a role in Na+ transport. GPCRs and their associated proteins play important roles in the development of cellular senescence (Santos-Otte et al. 2019). Membrane lipids in the brain regulate GPCR membrane receptor activation and function (Girych et al. 2023). Moreover, Leu side chains in GPCRs are generally more exposed at the protein surface than Ile side chains, and this facilitates correct insertion of the proteins into membranes and/or to stably anchor the receptors within membranes (Baumann and Zerbe 2023). GPCR dopamine receptor D(2) homodimers have been described in different activation states (Bueschbell et al. 2023).

.Menon et al. (2011) demonstrated that opsin and rhodopsin are ATP-independent phospholipid flippases in photoreceptor discs. Reconstitution of opsin into large unilamellar vesicles promotes rapid flipping of phospholipid probes across the vesicle membrane. Subsequent work demonstrated that several other G-protein receptors (β1-adrenergic receptors (TC# 9.A.14.3.11), β2-adrenergric receptors (TC# 9.A.14.3.5) and adenosine A2A receptors (TC# 9.A.14.3.8) scramble lipids (Menon et al. 2011; Goren et al. 2014; Ernst and Menon 2015).  It should be noted that all of the G-protein receptors integrate into the endoplasmic reticulum (ER) before entering secretory vesicles for export to the plasma membrane, and thus, they may serve as phospholipid flippases in the ER as well as the plasma membrane (Goren et al. 2014). Cholesterol interaction motifs in G protein-coupled receptors have been reviewed (Sarkar and Chattopadhyay 2020). Phospholipid scrambling by G protein-coupled receptors has been reviewed (Khelashvili and Menon 2021). Membrane lipids are an integral part of transmembrane allosteric sites in GPCRs as has been established with the cannabinoid CB1 receptor bound to a negative allosteric modulator, ORG27569, and analogs (Obi and Natesan 2022).

Close to the retinal ligand in rhodopsin, several water molecules help to organise a functionally important hydrogen bond network that undergoes significant changes during photo-activation (Lesca et al. 2018). Such water-mediated networks are critical for ligand binding to other GPCRs, and they are becoming increasingly important in drug discovery. GPCRs also contain a partially conserved water mediated hydrogen bond network that stabilises the ground state of the receptor, and rearrangement of this network leads to stabilization of the active state (Lesca et al. 2018). Protective energy transport and its function in heptahelical transmembrane proteins such as rhodopsin and G-proteins has been studied and reviewed (Helmer et al. 2022).

Crystal structures are available for rhodopsin, adrenergic receptors, and adenosine receptors in both inactive and activated forms, as well as for chemokine, dopamine, and histamine receptors in inactive conformations. Katritch et al. (2012) reviewed common structural features, outlined the scope of structural diversity of GPCRs at different levels of homology, and briefly discussed the impact of the structures on drug discovery. A distinct modularity is observed between the extracellular (ligand-binding) and intracellular (signaling) regions.  GPCRs comprise a consitutent family of the TOG superfamily which includes microbial rhodopsins (TC# 3.E.1) (Yee et al. 2013), and the conclusion of homology for members of these two families has been confirmed (Shalaeva et al. 2015). GPCRs and many other channel and transport proteins bind cholesterol to their intramembrane protein surfaces (Lee 2018). The dynamic aspects related to function have been considered (Wang et al. 2018).

In the retinal binding pocket of rhodopsin, a Schiff base links the retinal ligand covalently to the Lys296 side chain. Light transforms the inverse agonist 11-cis-retinal into the agonist all-trans-retinal, leading to the active Meta II state. Crystal structures of Meta II and the active conformation of the opsin apoprotein revealed two openings of the 7-transmembrane (TM) bundle towards the hydrophobic core of the membrane, one between TMS1/TMS7 and one between TMS5/TMS6, respectively. Computational analysis revealed a putative ligand channel connecting the openings and traversing the binding pocket. Single amino acids lining the channel were replaced, and 11-cis-retinal uptake and all-trans-retinal release were measured (Piechnick et al., 2012). Most mutations slow or accelerate both uptake and release, often with opposite effects, and mutations closer to the Lys296 active site show larger effects. The mutations do not probe local channel permeability but affect global protein dynamics, with the focal point in the ligand pocket. Piechnick et al. (2012) proposed a model for the retinal/receptor interaction in which the active receptor conformation sets the open state of the channel for 11-cis-retinal and all-trans-retinal, with positioning of the ligand at the active site as the kinetic bottleneck. Although other G protein-coupled receptors lack the covalent link to the protein, the access of ligands to their binding pocket may follow similar schemes. 

Rhodopsin contains a pocket within its seven TMSs which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TMS7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloads with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7 TMS bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7) and B (between TM5 and 6). A continuous channel through the protein connects these two openings and has in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 Å and is between 11.6 and 3.2 Å wide. Both openings are lined with aromatic residues, but the central part is polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket.  Unidirectional passage may involve uptake of 11-cis-retinal through A and release of photolyzed all-trans-retinal through B (Hildebrand et al. 2009).

Ion Channel-Coupled Receptors (ICCRs) are artificial proteins comprised of a G protein-coupled receptor and a fused ion channel, engineered to couple channel gating to ligand binding. These biological entities have potential use in drug screening and functional characterization, in addition to providing tools in the synthetic biology repertoire as synthetic K+-selective ligand-gated channels. The ICCR concept has been validated with fusion proteins between the K+ channel Kir6.2 and muscarinic M2 or dopaminergic D2 receptors. Caro et al. (2011) extended the concept to the longer β2-adrenergic receptor which, unlike M2 and D2 receptors, displayed barely detectable surface expression and did not couple to Kir6.2 when unmodified. However, a Kir6.2-binding protein, the N-terminal transmembrane domain of the sulfonylurea receptor, greatly increased plasma membrane expression of β2 constructs.

Odorant and taste receptors account for over half of the GPCR repertoire in man. These receptors are widely expressed throughout the body and function beyond the oronasal cavity - with roles including nutrient sensing, autophagy, muscle regeneration, regulation of gut motility, protective airway reflexes, bronchodilation, and respiratory disease. Foster et al. 2013 summarized the evidence for expression and function of odorant and taste receptors in tissues beyond the nose and mouth. 

The murine cytomegalovirus (MCMV) M78 protein (TC# 9.B.14.18.1) is a member of the β-herpesvirus 'UL78 family' of seven transmembrane receptors (7TMRs). These receptors are required for efficient cell-cell spread of their respective viruses in tissue culture, and M78 knockout viruses are attenuated for replication in vivo. M78 forms dimers, a property common to several cellular 7TMRs. M78 traffics to the cell surface, but is rapidly and constitutively endocytosed. M78 co-loclaizes with markers for both the clathrin-dependent and lipid raft/caveolae-mediated internalization pathways. In MCMV-infected cells, the subcellular localization of M78 is modified during the course of infection, which may be related to the incorporation of M78 into the virion envelope during the course of virion maturation (Sharp et al. 2009). The 7 TMS beta-Herpesvirus  M78 Protein (UL78) (TC# 9.A.14.18.1) Family is a subfamily of the GPCR family within the TOG superfamily. 

Structural studies have revealed that inactive rhodopsin-like class A GPCRs (Franco et al. 2016; Cong et al. 2017) harbor a conserved binding site for Na+ ions in the center of their transmembrane domain, accessible from the extracellular space. Vickery et al. 2017 showed that the opening of a conserved hydrated channel in activated state receptors allows the Na+ to egress from its binding site into the cytosol. Coupled with protonation changes, this ion movement occurs without significant energy barriers, and can be driven by physiological transmembrane ion and voltage gradients. They proposed that Na+ ion exchange with the cytosol is a key step in GPCR activation, and that this transition locks receptors in long-lived active-state conformations (Vickery et al. 2017). Thus, while some GPCRs are lipid flippases, class A GPCRs are ion channels, and some GPCRs may function as water channels. Opsin may also be capable of transporting retinal across the membrane. 

Rhodopsins are photoreceptive proteins and key tools in optogenetics (Kandori 2020). Although rhodopsin was originally named as a red-colored pigment for vision, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins respectively possess 11-cis and all-trans retinal, respectively. As cofactors bound with their animal and microbial rhodopsin (seven transmembrane alpha-helices) environments, 11-cis and all-trans retinal undergo photoisomerization into all-trans and 13-cis retinal forms as part of their functional cycle. While animal rhodopsins are G protein coupled receptors, the function of microbial rhodopsins is highly divergent. Many of the microbial rhodopsins are able to transport ions in a passive or an active manner. These light-gated channels or light-driven pumps represent the main tools for respectively effecting neural excitation and silencing in the emerging field of optogenetics (Kandori 2020).

Transmembrane receptors, of which GPCRs are the largest group, act as cellular antennae that  interpret information from the extracellular environment. Extracellular vesicles (EVs) are nanocarriers that can transport functionally competent transmembrane receptors, ligands, and a cargo of signal proteins. Roles for EVs in GPCR signal transduction have been reviewed (Bebelman et al. 2020). Their relevance to current GPCR and EV paradigms were discussed. GPCRs can be labeled and identified using tetrafunctional probes, consisting of (1) a ligand of interest, (2) 2-aryl-5-carboxytetrazole (ACT) as a photoreactive group, (3) a hydrazine-labile cleavable linker, and (4) biotin for enrichment (Miyajima et al. 2020).

Class A (rhodopsin-like) G protein-coupled receptors (GPCRs) are constitutive phospholipid scramblases as evinced after their reconstitution into liposomes. Yet phospholipid scrambling is not detectable in the resting plasma membrane of mammalian cells that is replete with GPCRs. Morra et al. 2022 considered whether cholesterol limits the ability of GPCRs to scramble lipids. A previous Markov State Model (MSM) analysis of molecular dynamics simulations of membrane-embedded opsin indicated that phospholipid headgroups traverse a dynamically revealed hydrophilic groove between TMSs 6 and 7 while their tails remain in the bilayer. Comparative MSM analyses of 150-mus simulations of opsin in cholesterol-free and cholesterol-rich membranes revealed that cholesterol inhibits phospholipid scrambling by occupying the TMS 6/7 interface and stabilizing the closed groove conformation while itself undergoing flip-flop. This mechanism may explain the inability of GPCRs to scramble lipids at the plasma membrane (Morra et al. 2022).

The allosteric binding sites in GPCRs are usually located in the flexible areas of proteins, which are hardly visible in the crystal structures. However, there are notable exceptions like allosteric sites in receptors in classes B and C of GPCRs, which are located within a well-defined bundle of transmembrane helices. Classes B and C evolved from class A, and even after swapping of orthosteric and allosteric sites, the central binding site persists, and it can be used for easy design of allosteric drugs.  Examples of  cannabinoid CB1 receptor N-terminal homology modeling, ligand-guided modeling of the allosteric site in a GABA receptor, as well as C-linker modeling in the potassium ion channels where the allosteric phospholipid ligand PIP2 is bound (Jakowiecki et al. 2023). 

The biochemistry of G-protein coupled receptors has been reviewed (Rehman S, Rahimi N, & Dimri M, PMID: 30085508).  G protein-coupled receptors (GPCRs) are integral membrane proteins containing an extracellular amino terminus, seven TMSs, and an intracellular carboxy terminus. GPCRs recognize a wide variety of signals ranging from photons to ions, proteins, neurotransmitters, and hormones. The human genome encodes nearly 800 GPCRs, representing over 3% of human genes. The GPCR superfamily comprises at least five structurally distinct subfamilies: Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, and Secretin receptor families. About 90% of all GPCRs belong to the rhodopsin family. Impaired ligand concentration, GPCR protein expression, or mutation and signaling are implicated in many pathophysiological conditions, including central nervous system (CNS) disorders, cardiovascular and metabolic diseases, respiratory malfunctions, gastrointestinal disorders, immune diseases, cancer, musculoskeletal pathologies, and eye diseases. Targeting of GPCRs is hence widely utilized for therapeutic intervention; GPCRs correspond to 30% of all identified drug targets and remain major targets for new drug development. Signal transduction through G proteins is the most prominent feature of GPCRs, initiated by a ligand-GPCR interaction at the cell surface level. 

The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein Gα(s), but their responses to Gβγ regulation are isoform-specific. For example, AC5 is conditionally activated by Gβγ. Yen et al. 2023 reported cryo-EM structures of ligand-free AC5 in complex with Gβγ and of a dimeric form of AC5 that could be involved in its regulation. Gβγ (Gbetagamma) binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C(1b)) that is known to be a hub for isoform-specific regulation. They confirmed the Gbetagamma interaction with both purified proteins and cell-based assays. The interface with Gbetagamma involves AC5 residues that are subject to gain-of-function mutations in humans with familial dyskinesia, indicating that the observed interaction is important for motor function. A molecular mechanism wherein Gbetagamma either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core, is proposed (Yen et al. 2023). 

Generalized transport reactions catalyzed by opsin and/or certain other GPCRs are:


lipid (inner leaflet) ⇌ lipid (outer leaflet)


Na+ (out) ⇌ Na+ (in)

retinal (out) ⇌ retinal (in)

water (out) ⇌ water (in)


References associated with 9.A.14 family:

Abd-Elrahman, K.S., A. Albaker, J.M. de Souza, F.M. Ribeiro, M.G. Schlossmacher, M. Tiberi, A. Hamilton, and S.S.G. Ferguson. (2020). Aβ oligomers induce pathophysiological mGluR5 signaling in Alzheimer''s disease model mice in a sex-selective manner. Sci Signal 13:. 33323410
Adam, M., Y. Boie, T.H. Rushmore, G. Müller, L. Bastien, K.T. McKee, K.M. Metters, and M. Abramovitz. (1994). Cloning and expression of three isoforms of the human EP3 prostanoid receptor. FEBS Lett. 338: 170-174. 8307176
Ahmed, K., S. Tunaru, C.D. Langhans, J. Hanson, C.W. Michalski, S. Kölker, P.M. Jones, J.G. Okun, and S. Offermanns. (2009). Deorphanization of GPR109B as a receptor for the β-oxidation intermediate 3-OH-octanoic acid and its role in the regulation of lipolysis. J. Biol. Chem. 284: 21928-21933. 19561068
Allard, C.A.H., G. Kang, J.J. Kim, W.A. Valencia-Montoya, R.E. Hibbs, and N.W. Bellono. (2023). Structural basis of sensory receptor evolution in octopus. Nature 616: 373-377. 37045920
Allouche-Fitoussi, D., D. Bakhshi, and H. Breitbart. (2018). Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn. Mol Reprod Dev 85: 543-556. 29750435
Angelousi, A., K.I. Alexandraki, C. Mytareli, A.B. Grossman, and G. Kaltsas. (2023). New developments and concepts in the diagnosis and management of diabetes insipidus (AVP-deficiency and resistance). J Neuroendocrinol 35: e13233. 36683321
Ariyasu, T., S. Matsumoto, F. Kyono, T. Hanaya, S. Arai, M. Ikeda, and M. Kurimoto. (2018). Taste receptor T1R3 is an essential molecule for the cellular recognition of the disaccharide trehalose. In Vitro Cell Dev Biol Anim 39: 80-88. 12892531
Assetta, B., M.S. Maginnis, I. Gracia Ahufinger, S.A. Haley, G.V. Gee, C.D. Nelson, B.A. O''Hara, S.A. Allen Ramdial, and W.J. Atwood. (2013). 5-HT2 receptors facilitate JC polyomavirus entry. J. Virol. 87: 13490-13498. 24089568
Audet, M. and M. Bouvier. (2012). Restructuring G-protein- coupled receptor activation. Cell 151: 14-23. 23021212
Audsley, N. and R.E. Down. (2015). G protein coupled receptors as targets for next generation pesticides. Insect Biochem Mol Biol 67: 27-37. 26226649
Aust, G., D. Zhu, E.G. Van Meir, and L. Xu. (2016). Adhesion GPCRs in Tumorigenesis. Handb Exp Pharmacol 234: 369-396. 27832497
Bächinger, D., H. Egli, M.M. Goosmann, A. Monge Naldi, and A.H. Eckhard. (2019). Immunolocalization of calcium sensing and transport proteins in the murine endolymphatic sac indicates calciostatic functions within the inner ear. Cell Tissue Res. [Epub: Ahead of Print] 31338584
Baert, B., C. Baysse, S. Matthijs, and P. Cornelis. (2008). Multiple phenotypic alterations caused by a c-type cytochrome maturation ccmC gene mutation in Pseudomonas aeruginosa. Microbiology 154: 127-138. 18174132
Balfanz, S., T. Strünker, S. Frings, and A. Baumann. (2005). A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J Neurochem 93: 440-451. 15816867
Bansal, P.D., S. Dutta, and D. Shukla. (2023). Activation mechanism of the human Smoothened receptor. Biophys. J. 122: 1400-1413. 36883002
Baumann, C. and O. Zerbe. (2023). The role of leucine and isoleucine in tuning the hydropathy of class A GPCRs. Proteins. [Epub: Ahead of Print] 37497770
Bebelman, M.P., C. Crudden, D.M. Pegtel, and M.J. Smit. (2020). The Convergence of Extracellular Vesicle and GPCR Biology. Trends Pharmacol Sci. [Epub: Ahead of Print] 32711926
Becirovic E., Nguyen ON., Paparizos C., Butz ES., Stern-Schneider G., Wolfrum U., Hauck SM., Ueffing M., Wahl-Schott C., Michalakis S. and Biel M. (2014). Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors. Hum Mol Genet. 23(22):5989-97. 24963162
Bernier, V., R. Stocco, M.J. Bogusky, J.G. Joyce, C. Parachoniak, K. Grenier, M. Arget, M.C. Mathieu, G.P. O'Neill, D. Slipetz, M.A. Crackower, C.M. Tan, and A.G. Therien. (2006). Structure-function relationships in the neuropeptide S receptor: molecular consequences of the asthma-associated mutation N107I. J. Biol. Chem. 281: 24704-24712. 16790440
Bhandari, D., S. Kachhap, G. Madhukar, K.K. Adepu, A. Anishkin, J.R. Chen, and S.V. Chintapalli. (2022). Exploring GPR109A Receptor Interaction with Hippuric Acid Using MD Simulations and CD Spectroscopy. Int J Mol Sci 23:. 36499106
Blankenship E., Vahedi-Faridi A. and Lodowski DT. (2015). The High-Resolution Structure of Activated Opsin Reveals a Conserved Solvent Network in the Transmembrane Region Essential for Activation. Structure. 23(12):2358-64. 26526852
Borroni, E.M., C. Cancellieri, A. Vacchini, Y. Benureau, B. Lagane, F. Bachelerie, F. Arenzana-Seisdedos, K. Mizuno, A. Mantovani, R. Bonecchi, and M. Locati. (2013). β-arrestin-dependent activation of the cofilin pathway is required for the scavenging activity of the atypical chemokine receptor D6. Sci Signal 6: ra30.1-11, S1-3. 23633677
Bouchard, J.F., C. Casanova, B. Cécyre, and W.J. Redmond. (2016). Expression and Function of the Endocannabinoid System in the Retina and the Visual Brain. Neural Plast 2016: 9247057. 26839718
Briscoe, C.P., M. Tadayyon, J.L. Andrews, W.G. Benson, J.K. Chambers, M.M. Eilert, C. Ellis, N.A. Elshourbagy, A.S. Goetz, D.T. Minnick, P.R. Murdock, H.R. Sauls, Jr, U. Shabon, L.D. Spinage, J.C. Strum, P.G. Szekeres, K.B. Tan, J.M. Way, D.M. Ignar, S. Wilson, and A.I. Muir. (2003). The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 278: 11303-11311. 12496284
Brown, L.S. and O.P. Ernst. (2017). Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. Biochim. Biophys. Acta. Proteins Proteom 1865: 1512-1521. 28844743
Bueschbell, B., P.R. Magalhães, C.A.V. Barreto, R. Melo, A.C. Schiedel, M. Machuqueiro, and I.S. Moreira. (2023). The World of GPCR dimers - Mapping dopamine receptor D homodimers in different activation states and configuration arrangements. Comput Struct Biotechnol J 21: 4336-4353. 37711187
Burbach, J.P.H. and D.H. Meijer. (2019). Latrophilin''s Social Protein Network. Front Neurosci 13: 643. 31297045
Busnelli, M., G. Kleinau, M. Muttenthaler, S. Stoev, M. Manning, L. Bibic, L.A. Howell, P.J. McCormick, S. Di Lascio, D. Braida, M. Sala, G.E. Rovati, T. Bellini, and B. Chini. (2016). Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via a Channel-Like Structure. J Med Chem. [Epub: Ahead of Print] 27420737
Caffrey M., Li D. and Dukkipati A. (2012). Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry. 51(32):6266-88. 22783824
Caliman, A.D., Y. Miao, and J.A. McCammon. (2017). Activation mechanisms of the first sphingosine-1-phosphate receptor. Protein. Sci. [Epub: Ahead of Print] 28370663
Caro, L.N., C.J. Moreau, J. Revilloud, and M. Vivaudou. (2011). β2-Adrenergic ion-channel coupled receptors as conformational motion detectors. PLoS One 6: e18226. 21464970
Casida, J.E. and K.A. Durkin. (2013). Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58: 99-117. 23317040
Chakrabarti, S., J.D. Klich, M.A. Khallaf, A.J. Hulme, O. Sánchez-Carranza, Z.M. Baran, A. Rossi, A.T. Huang, T. Pohl, R. Fleischer, C. Fürst, A. Hammes, V. Bégay, H. Hörnberg, R.K. Finol-Urdaneta, K. Poole, M. Dottori, and G.R. Lewin. (2024). Touch sensation requires the mechanically gated ion channel ELKIN1. Science 383: 992-998. 38422143
Chang, R., X. Zhang, A. Qiao, A. Dai, M.J. Belousoff, Q. Tan, L. Shao, L. Zhong, G. Lin, Y.L. Liang, L. Ma, S. Han, D. Yang, R. Danev, M.W. Wang, D. Wootten, B. Wu, and P.M. Sexton. (2020). Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. J. Biol. Chem. [Epub: Ahead of Print] 32371397
Chaturvedi, M. and A.K. Shukla. (2020). Calcium as a biased cofactor. Science 368: 369-370. 32327587
Chauhan, N., L. Farine, K. Pandey, A.K. Menon, and P. Bütikofer. (2016). Lipid topogenesis - 35years on. Biochim. Biophys. Acta. [Epub: Ahead of Print] 26946259
Chen, A., L. Dong, N.R. Leffler, A.S. Asch, O.N. Witte, and L.V. Yang. (2011). Activation of GPR4 by acidosis increases endothelial cell adhesion through the cAMP/Epac pathway. PLoS One 6: e27586. 22110680
Chen, C., Y. Zhang, Y. Liu, L. Hang, and J. Yang. (2022). Expression of Tumor Suppressor SFRP1 Predicts Biological Behaviors and Prognosis: A Potential Target for Oral Squamous Cell Carcinoma. Biomolecules 12:. 35892344
Chen, N., S. Pai, Z. Zhao, A. Mah, R. Newbury, R.C. Johnsen, Z. Altun, D.G. Moerman, D.L. Baillie, and L.D. Stein. (2005). Identification of a nematode chemosensory gene family. Proc. Natl. Acad. Sci. USA 102: 146-151. 15618405
Cohen-Armon, M. (2023). Are Voltage Sensors Really Embedded in Muscarinic Receptors? Int J Mol Sci 24:. 37108699
Cong, X., J. Topin, and J. Golebiowski. (2017). Class A GPCRs: Structure, Function, Modeling and Structure-based Ligand Design. Curr Pharm Des 23: 4390-4409. 28699533
Console-Bram, L., E. Brailoiu, G.C. Brailoiu, H. Sharir, and M.E. Abood. (2014). Activation of GPR18 by cannabinoid compounds: a tale of biased agonism. Br J Pharmacol 171: 3908-3917. 24762058
Correia, A.S., S.C. Pereira, T. Morais, A.D. Martins, M.P. Monteiro, M.G. Alves, and P.F. Oliveira. (2022). Obesity-Related Genes Expression in Testes and Sperm Parameters Respond to GLP-1 and Caloric Restriction. Biomedicines 10:. 36289871
Costagliola, S., V. Panneels, M. Bonomi, J. Koch, M.C. Many, G. Smits, and G. Vassart. (2002). Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors. EMBO. J. 21: 504-513. 11847099
Cussac, D., E. Boutet-Robinet, M.C. Ailhaud, A. Newman-Tancredi, J.C. Martel, N. Danty, and I. Rauly-Lestienne. (2008). Agonist-directed trafficking of signalling at serotonin 5-HT2A, 5-HT2B and 5-HT2C-VSV receptors mediated Gq/11 activation and calcium mobilisation in CHO cells. Eur J Pharmacol 594: 32-38. 18703043
Da Costa, G., A. Bondon, J. Coutant, P. Curmi, and J.P. Monti. (2013). Intermolecular interactions between the neurotensin and the third extracellular loop of human neurotensin 1 receptor. J Biomol Struct Dyn 31: 1381-1392. 23140271
De Giovanni, M., H. Chen, X. Li, and J.G. Cyster. (2023). GPR35 and mediators from platelets and mast cells in neutrophil migration and inflammation. Immunol Rev 317: 187-202. 36928841
Deady, L.D. and J. Sun. (2015). A Follicle Rupture Assay Reveals an Essential Role for Follicular Adrenergic Signaling in Drosophila Ovulation. PLoS Genet 11: e1005604. 26473732
Deshpande, I. and A. Manglik. (2022). Biochemical Assays to Directly Assess Smoothened Activation by a Conformationally Sensitive Nanobody. Methods Mol Biol 2374: 149-160. 34562250
Deupi, X., P. Edwards, A. Singhal, B. Nickle, D. Oprian, G. Schertler, and J. Standfuss. (2012). Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc. Natl. Acad. Sci. USA 109: 119-124. 22198838
Di Giorgio, N.P., M. Bizzozzero, C. Libertun, and V. Lux-Lantos. (2019). Unraveling the connection between GABA and Kisspeptin in the control of reproduction. Reproduction. [Epub: Ahead of Print] 30844750
Doré, A.S., K. Okrasa, J.C. Patel, M. Serrano-Vega, K. Bennett, R.M. Cooke, J.C. Errey, A. Jazayeri, S. Khan, B. Tehan, M. Weir, G.R. Wiggin, and F.H. Marshall. (2014). Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511: 557-562. 25042998
DuBose, D.R., S.C. Wolff, A.D. Qi, I. Naruszewicz, and R.A. Nicholas. (2013). Apical targeting of the P2Y(4) receptor is directed by hydrophobic and basic residues in the cytoplasmic tail. Am. J. Physiol. Cell Physiol. 304: C228-239. 23054062
Dudek, A.M., N. Zabaleta, E. Zinn, S. Pillay, J. Zengel, C. Porter, J.S. Franceschini, R. Estelien, J.E. Carette, G.L. Zhou, and L.H. Vandenberghe. (2020). GPR108 Is a Highly Conserved AAV Entry Factor. Mol Ther 28: 367-381. 31784416
Durkina, A.V., B. Szeiffova Bacova, O.G. Bernikova, M.A. Gonotkov, K.A. Sedova, J. Cuprova, M.A. Vaykshnorayte, E.R. Diez, N.J. Prado, and J.E. Azarov. (2023). Blockade of Melatonin Receptors Abolishes Its Antiarrhythmic Effect and Slows Ventricular Conduction in Rat Hearts. Int J Mol Sci 24:. 37569306
Elisi, G.M., L. Scalvini, A. Lodola, M. Mor, and S. Rivara. (2021). Free-Energy Simulations Support a Lipophilic Binding Route for Melatonin Receptors. J Chem Inf Model. [Epub: Ahead of Print] 34932329
Ernst, O.P. and A.K. Menon. (2015). Phospholipid scrambling by rhodopsin. Photochem Photobiol Sci 14: 1922-1931. 26179029
Evans, J., R.D. Catalano, K. Morgan, H.O. Critchley, R.P. Millar, and H.N. Jabbour. (2008). Prokineticin 1 signaling and gene regulation in early human pregnancy. Endocrinology 149: 2877-2887. 18339712
Flegel, C., F. Vogel, A. Hofreuter, S. Wojcik, C. Schoeder, K. Kieć-Kononowicz, N.H. Brockmeyer, C.E. Müller, C. Becker, J. Altmüller, H. Hatt, and G. Gisselmann. (2016). Characterization of non-olfactory GPCRs in human sperm with a focus on GPR18. Sci Rep 6: 32255. 27572937
Flor, P.J., K. Lindauer, I. Püttner, D. Rüegg, S. Lukic, T. Knöpfel, and R. Kuhn. (1995). Molecular cloning, functional expression and pharmacological characterization of the human metabotropic glutamate receptor type 2. Eur J. Neurosci. 7: 622-629. 7620613
Flores, J.J., Y. Ding, P. Sherchan, J.H. Zhang, and J. Tang. (2023). Annexin A1 upregulates hematoma resolution via the FPR2/p-ERK(1/2)/DUSP1/CD36 signaling pathway after germinal matrix hemorrhage. Exp Neurol 359: 114257. 36279933
Foster SR., Roura E. and Thomas WG. (2014). Extrasensory perception: odorant and taste receptors beyond the nose and mouth. Pharmacol Ther. 142(1):41-61. 24280065
Franco, R., E. Martínez-Pinilla, J.L. Lanciego, and G. Navarro. (2016). Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization. Front Pharmacol 7: 76. 27065866
Fridmanis, D., R. Petrovska, I. Kalnina, M. Slaidina, R. Peculis, H.B. Schiöth, and J. Klovins. (2010). Identification of domains responsible for specific membrane transport and ligand specificity of the ACTH receptor (MC2R). Mol. Cell Endocrinol 321: 175-183. 20206229
Gadgaard, C. and A.A. Jensen. (2020). Functional characterization of 5-HT and 5-HT serotonin receptor signaling through G-protein-activated inwardly rectifying K channels in a fluorescence-based membrane potential assay. Biochem Pharmacol 113870. [Epub: Ahead of Print] 32088264
Gaida, M.M., C. Mayer, U. Dapunt, S. Stegmaier, P. Schirmacher, G.H. Wabnitz, and G.M. Hänsch. (2016). Expression of the bitter receptor T2R38 in pancreatic cancer: localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget. [Epub: Ahead of Print] 26862855
Gandasi, N.R., V. Arapi, M.E. Mickael, P.A. Belekar, L. Granlund, L. Kothegala, R. Fredriksson, and S. Bagchi. (2021). Glutamine Uptake via SNAT6 and Caveolin Regulates Glutamine-Glutamate Cycle. Int J Mol Sci 22:. 33503881
Gaudet, H.M., S.B. Cheng, E.M. Christensen, and E.J. Filardo. (2015). The G-protein coupled estrogen receptor, GPER: The inside and inside-out story. Mol. Cell Endocrinol 418Pt3: 207-219. 26190834
Gelis, L., N. Jovancevic, S. Veitinger, B. Mandal, H.D. Arndt, E.M. Neuhaus, and H. Hatt. (2016). Functional Characterization of the Odorant Receptor 51E2 in Human Melanocytes. J. Biol. Chem. 291: 17772-17786. 27226631
Giordano, F., C. Bonetti, E.M. Surace, V. Marigo, and G. Raposo. (2009). The ocular albinism type 1 (OA1) G-protein-coupled receptor functions with MART-1 at early stages of melanogenesis to control melanosome identity and composition. Hum Mol Genet 18: 4530-4545. 19717472
Girych, M., W. Kulig, G. Enkavi, and I. Vattulainen. (2023). How Neuromembrane Lipids Modulate Membrane Proteins: Insights from G-Protein-Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs). Cold Spring Harb Perspect Biol. [Epub: Ahead of Print] 37487628
Goncalves, J.A., K. South, S. Ahuja, E. Zaitseva, C.A. Opefi, M. Eilers, R. Vogel, P.J. Reeves, and S.O. Smith. (2010). Highly conserved tyrosine stabilizes the active state of rhodopsin. Proc. Natl. Acad. Sci. USA 107: 19861-19866. 21041664
González-Maeso, J., R.L. Ang, T. Yuen, P. Chan, N.V. Weisstaub, J.F. López-Giménez, M. Zhou, Y. Okawa, L.F. Callado, G. Milligan, J.A. Gingrich, M. Filizola, J.J. Meana, and S.C. Sealfon. (2008). Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452: 93-97. 18297054
Goren, M.A., T. Morizumi, I. Menon, J.S. Joseph, J.S. Dittman, V. Cherezov, R.C. Stevens, O.P. Ernst, and A.K. Menon. (2014). Constitutive phospholipid scramblase activity of a G protein-coupled receptor. Nat Commun 5: 5115. 25296113
Gronert, K., A. Gewirtz, J.L. Madara, and C.N. Serhan. (1998). Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon gamma and inhibits tumor necrosis factor α-induced IL-8 release. J Exp Med 187: 1285-1294. 9547339
Gros, R., Q. Ding, B. Liu, J. Chorazyczewski, and R.D. Feldman. (2013). Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation. Am. J. Physiol. Cell Physiol. 304: C532-540. 23283935
Gupta, R., D.C. Nguyen, M.D. Schaid, X. Lei, A.N. Balamurugan, G.W. Wong, J.A. Kim, J.E. Koltes, M.E. Kimple, and S. Bhatnagar. (2018). Complement 1q like-3 protein inhibits insulin secretion from pancreatic β-cells via the cell adhesion G protein-coupled receptor BAI3. J. Biol. Chem. [Epub: Ahead of Print] 30228187
Hagiwara Y., Ohno K., Kamohara M., Takasaki J., Watanabe T., Fukunishi Y., Nakamura H. and Orita M. (2013). Molecular modeling of vasopressin receptor and in silico screening of V1b receptor antagonists. Expert Opin Drug Discov. 8(8):951-64. 23682717
Hamoud, N., V. Tran, L.P. Croteau, A. Kania, and J.F. Côté. (2014). G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proc. Natl. Acad. Sci. USA 111: 3745-3750. 24567399
Han, K.A., N.S. Millar, and R.L. Davis. (1998). A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J. Neurosci. 18: 3650-3658. 9570796
Hannedouche, S., J. Zhang, T. Yi, W. Shen, D. Nguyen, J.P. Pereira, D. Guerini, B.U. Baumgarten, S. Roggo, B. Wen, R. Knochenmuss, S. Noël, F. Gessier, L.M. Kelly, M. Vanek, S. Laurent, I. Preuss, C. Miault, I. Christen, R. Karuna, W. Li, D.I. Koo, T. Suply, C. Schmedt, E.C. Peters, R. Falchetto, A. Katopodis, C. Spanka, M.O. Roy, M. Detheux, Y.A. Chen, P.G. Schultz, C.Y. Cho, K. Seuwen, J.G. Cyster, and A.W. Sailer. (2011). Oxysterols direct immune cell migration via EBI2. Nature 475: 524-527. 21796212
Hanson, M.A., C.B. Roth, E. Jo, M.T. Griffith, F.L. Scott, G. Reinhart, H. Desale, B. Clemons, S.M. Cahalan, S.C. Schuerer, M.G. Sanna, G.W. Han, P. Kuhn, H. Rosen, and R.C. Stevens. (2012). Crystal structure of a lipid G protein-coupled receptor. Science 335: 851-855. 22344443
Harada, M., Y. Habata, M. Hosoya, K. Nishi, R. Fujii, M. Kobayashi, and S. Hinuma. (2004). N-Formylated humanin activates both formyl peptide receptor-like 1 and 2. Biochem. Biophys. Res. Commun. 324: 255-261. 15465011
Harrington, M.A., K. Shaw, P. Zhong, and R.D. Ciaranello. (1994). Agonist-induced desensitization and loss of high-affinity binding sites of stably expressed human 5-HT1A receptors. J Pharmacol Exp Ther 268: 1098-1106. 8138923
Hase, M., T. Yokomizo, T. Shimizu, and M. Nakamura. (2008). Characterization of an orphan G protein-coupled receptor, GPR20, that constitutively activates Gi proteins. J. Biol. Chem. 283: 12747-12755. 18347022
Häussinger, D. and C. Kordes. (2017). Mechanisms of Tauroursodeoxycholate-Mediated Hepatoprotection. Dig Dis 35: 224-231. 28249278
Helmer, N., S. Wolf, and G. Stock. (2022). Energy Transport and Its Function in Heptahelical Transmembrane Proteins. J Phys Chem B 126: 8735-8746. 36261792
Hendrikse, E.R., R.L. Bower, D.L. Hay, and C.S. Walker. (2019). Molecular studies of CGRP and the CGRP family of peptides in the central nervous system. Cephalalgia 39: 403-419. 29566540
Hennen, S., J.T. Kodra, V. Soroka, B.O. Krogh, X. Wu, P. Kaastrup, C. Ørskov, S.G. Rønn, G. Schluckebier, S. Barbateskovic, P.S. Gandhi, and S. Reedtz-Runge. (2016). Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor. Sci Rep 6: 26236. 27196125
Herbert, J.M. and P. Savi. (2003). P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin Vasc Med 3: 113-122. 15199474
Hildebrand, P.W., P. Scheerer, J.H. Park, H.W. Choe, R. Piechnick, O.P. Ernst, K.P. Hofmann, and M. Heck. (2009). A ligand channel through the G protein coupled receptor opsin. PLoS One 4: e4382. 19194506
Hilger, D., K.K. Kumar, H. Hu, M.F. Pedersen, E.S. O'Brien, L. Giehm, C. Jennings, G. Eskici, A. Inoue, M. Lerch, J.M. Mathiesen, G. Skiniotis, and B.K. Kobilka. (2020). Structural insights into differences in G protein activation by family A and family B GPCRs. Science 369:. 32732395
Hirata, T., M. Fujita, S. Nakamura, K. Gotoh, D. Motooka, Y. Murakami, Y. Maeda, and T. Kinoshita. (2015). Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport. Mol. Biol. Cell 26: 3071-3084. 26157166
Hoel, C.M., L. Zhang, and S.G. Brohawn. (2022). Structure of the GOLD-domain seven-transmembrane helix protein family member TMEM87A. Elife 11:. 36373655
Hollenstein, K., J. Kean, A. Bortolato, R.K. Cheng, A.S. Doré, A. Jazayeri, R.M. Cooke, M. Weir, and F.H. Marshall. (2013). Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499: 438-443. 23863939
Hollopeter, G., H.M. Jantzen, D. Vincent, G. Li, L. England, V. Ramakrishnan, R.B. Yang, P. Nurden, A. Nurden, D. Julius, and P.B. Conley. (2001). Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409: 202-207. 11196645
Hsieh, J.C., A. Rattner, P.M. Smallwood, and J. Nathans. (1999). Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl. Acad. Sci. USA 96: 3546-3551. 10097073
Israeli, H., O. Degtjarik, F. Fierro, V. Chunilal, A.K. Gill, N.J. Roth, J. Botta, V. Prabahar, Y. Peleg, L.F. Chan, D. Ben-Zvi, P.J. McCormick, M.Y. Niv, and M. Shalev-Benami. (2021). Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science 372: 808-814. 33858992
Jacobson, K.A., S. Paoletta, V. Katritch, B. Wu, Z.G. Gao, Q. Zhao, R.C. Stevens, and E. Kiselev. (2015). Nucleotides Acting at P2Y Receptors: Connecting Structure and Function. Mol Pharmacol 88: 220-230. 25837834
Jakowiecki, J., U. Orzeł, A. Gliździnska, M. Możajew, and S. Filipek. (2023). Specificities of Protein Homology Modeling for Allosteric Drug Design. Methods Mol Biol 2627: 339-348. 36959457
Jayanthi, S., S.W. Kang, D. Bingham, B.A. Tessaro, T.K.S. Kumar, and W.J. Kuenzel. (2014). Identification of antagonists to the vasotocin receptor sub-type 4 (VT4R) involved in stress by molecular modelling and verification using anterior pituitary cells. J Biomol Struct Dyn 32: 648-660. 23672311
Jenkins, L., E. Alvarez-Curto, K. Campbell, S. de Munnik, M. Canals, S. Schlyer, and G. Milligan. (2011). Agonist activation of the G protein-coupled receptor GPR35 involves transmembrane domain III and is transduced via Gα₁₃ and β-arrestin-2. Br J Pharmacol 162: 733-748. 20958291
Jia, A.Y., R. Kashani, N.G. Zaorsky, B.C. Baumann, J. Michalski, J.E. Zoberi, A.P. Kiess, and D.E. Spratt. (2022). Lutetium-177 Prostate-Specific Membrane Antigen Therapy: A Practical Review. Pract Radiat Oncol 12: 294-299. 35717043
Jia, M., J. Liang, Z. Li, Y. Qin, Q. Li, J. Wang, and X. Lu. (2023). Screening tumor stage-specific candidate neoantigens in thyroid adenocarcinoma using integrated exome and transcriptome sequencing. Front Immunol 14: 1187160. 37854594
Jia, Y., B. Yang, W. Dong, Z. Liu, Z. Lv, Z. Jia, L. Qiu, L. Wang, and L. Song. (2018). A serotonin receptor (Cg5-HTR-1) mediating immune response in oyster Crassostrea gigas. Dev Comp Immunol 82: 83-93. 29305167
Jiang, H., X. Zhang, Y. Wu, B. Zhang, J. Wei, J. Li, Y. Huang, L. Chen, and X. He. (2022). Bioinformatics identification and validation of biomarkers and infiltrating immune cells in endometriosis. Front Immunol 13: 944683. 36524127
Jin, J., J.L. Daniel, and S.P. Kunapuli. (1998). Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J. Biol. Chem. 273: 2030-2034. 9442040
Jo, J., G.H. Son, B.L. Winters, M.J. Kim, D.J. Whitcomb, B.A. Dickinson, Y.B. Lee, K. Futai, M. Amici, M. Sheng, G.L. Collingridge, and K. Cho. (2010). Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. Nat Neurosci 13: 1216-1224. 20852624
Josephs, T.M., M.J. Belousoff, Y.L. Liang, S.J. Piper, J. Cao, D.J. Garama, K. Leach, K.J. Gregory, A. Christopoulos, D.L. Hay, R. Danev, D. Wootten, and P.M. Sexton. (2021). Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science 372:. 33602864
Jovancevic, N., S. Khalfaoui, M. Weinrich, D. Weidinger, A. Simon, B. Kalbe, M. Kernt, A. Kampik, G. Gisselmann, L. Gelis, and H. Hatt. (2017). Odorant Receptor 51E2 Agonist β-ionone Regulates RPE Cell Migration and Proliferation. Front Physiol 8: 888. 29249973
Kandori, H. (2020). Biophysics of rhodopsins and optogenetics. Biophys Rev. [Epub: Ahead of Print] 32065378
Kang, S.W., S. Jayanthi, G. Nagarajan, T.K. Suresh Kumar, and W.J. Kuenzel. (2019). Identification of avian vasotocin receptor subtype-specific antagonists involved in the stress response of the chicken, Gallus gallus. J Biomol Struct Dyn 37: 1685-1699. 29658387
Katritch, V., V. Cherezov, and R.C. Stevens. (2012). Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33: 17-27. 22032986
Kawamata, Y., R. Fujii, M. Hosoya, M. Harada, H. Yoshida, M. Miwa, S. Fukusumi, Y. Habata, T. Itoh, Y. Shintani, S. Hinuma, Y. Fujisawa, and M. Fujino. (2003). A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278: 9435-9440. 12524422
Khelashvili, G. and A.K. Menon. (2021). Phospholipid Scrambling by G Protein-Coupled Receptors. Annu Rev Biophys. [Epub: Ahead of Print] 34932914
Kim, E.S., S.Y. Kim, J.Y. Lee, J.H. Han, T.S. Sohn, H.S. Son, and S.D. Moon. (2016). Identification and functional analysis of a novel CaSR mutation in a family with familial hypocalciuric hypercalcemia. J Bone Miner Metab 34: 662-667. 26386835
Kjær, V.M.S., T.M. Stępniewski, B. Medel-Lacruz, L. Reinmuth, M. Ciba, E. Rexen Ulven, M. Bonomi, J. Selent, and M.M. Rosenkilde. (2023). Ligand entry pathways control the chemical space recognized by GPR183. Chem Sci 14: 10671-10683. 37829039
Kleinau, G., A.H. Ali, F. Wiechert, M. Szczepek, A. Schmidt, C.M.T. Spahn, I. Liebscher, T. Schöneberg, and P. Scheerer. (2023). Intramolecular activity regulation of adhesion GPCRs in light of recent structural and evolutionary information. Pharmacol Res 197: 106971. 38032292
Knapman, A. and M. Connor. (2015). Cellular signalling of non-synonymous single-nucleotide polymorphisms of the human μ-opioid receptor (OPRM1). Br J Pharmacol 172: 349-363. 24527749
Knauer, C.S., J.E. Campbell, C.L. Chio, and L.W. Fitzgerald. (2009). Pharmacological characterization of mitogen-activated protein kinase activation by recombinant human 5-HT2C, 5-HT2A, and 5-HT2B receptors. Naunyn Schmiedebergs Arch Pharmacol 379: 461-471. 19057895
Kobayashi, K., K. Kawakami, T. Kusakizako, A. Tomita, M. Nishimura, K. Sawada, H.H. Okamoto, S. Hiratsuka, G. Nakamura, R. Kuwabara, H. Noda, H. Muramatsu, M. Shimizu, T. Taguchi, A. Inoue, T. Murata, and O. Nureki. (2023). Class B1 GPCR activation by an intracellular agonist. Nature 618: 1085-1093. 37286611
Kodippili, G.C., K. Giger, K.S. Putt, and P.S. Low. (2020). DARC, Glycophorin A, Band 3, and GLUT1 Diffusion in Erythrocytes: Insights into Membrane Complexes. Biophys. J. 119: 1749-1759. 33069269
Kohno, M., H. Hasegawa, A. Inoue, M. Muraoka, T. Miyazaki, K. Oka, and M. Yasukawa. (2006). Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem. Biophys. Res. Commun. 347: 827-832. 16844083
Krumm, B.E. and R. Grisshammer. (2015). Peptide ligand recognition by G protein-coupled receptors. Front Pharmacol 6: 48. 25852552
Kruska, N. and G. Reiser. (2011). Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40. Neurobiol Dis 43: 465-472. 21570468
Kulkarni, R.D., M.R. Thon, H. Pan, and R.A. Dean. (2005). Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6: R24. 15774025
Kunapuli, S.P., G. Fen Mao, M. Bastepe, L.Y. Liu-Chen, S. Li, P.P. Cheung, J.K. DeRiel, and B. Ashby. (1994). Cloning and expression of a prostaglandin E receptor EP3 subtype from human erythroleukaemia cells. Biochem. J. 298(Pt2): 263-267. 8135729
Laboute, T., S. Zucca, M. Holcomb, D.N. Patil, C. Garza, B.A. Wheatley, R.N. Roy, S. Forli, and K.A. Martemyanov. (2023). Orphan receptor GPR158 serves as a metabotropic glycine receptor: mGlyR. Science 379: 1352-1358. 36996198
Latek, D. (2017). Rosetta Broker for membrane protein structure prediction: concentrative nucleoside transporter 3 and corticotropin-releasing factor receptor 1 test cases. BMC Struct Biol 17: 8. 28774292
Latif, R., T.F. Davies, and M. Mezei. (2023). Functional Water Channels Within the TSH Receptor - a new paradigm for TSH action with disease implications. Endocrinology. [Epub: Ahead of Print] 37767722
Lau, J., P. Bloch, L. Schäffer, I. Pettersson, J. Spetzler, J. Kofoed, K. Madsen, L.B. Knudsen, J. McGuire, D.B. Steensgaard, H.M. Strauss, D.X. Gram, S.M. Knudsen, F.S. Nielsen, P. Thygesen, S. Reedtz-Runge, and T. Kruse. (2015). Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J Med Chem 58: 7370-7380. 26308095
Lee, A.G. (2018). A Database of Predicted Binding Sites for Cholesterol on Membrane Proteins, Deep in the Membrane. Biophys. J. 115: 522-532. 30007584
Lee, K.H., J.J. Manning, J. Javitch, and L. Shi. (2023). A Novel "Activation Switch" Motif Common to All Aminergic Receptors. J Chem Inf Model. [Epub: Ahead of Print] 37540602
Legueux-Cajgfinger, Y., M. Velusamy, S. Fathallah, B. Vallin, L. Duca, M. Dauchez, P. Vincent, I. Limon, and R. Blaise. (2023). Dual inhibitory mechanism of the truncated form of adenylyl cyclase 8 in cell signal integration: Structural and functional approaches. Biochim. Biophys. Acta. Mol. Cell Res 119645. [Epub: Ahead of Print] 38016490
Lemel, L., K. Nieścierowicz, M.D. García-Fernández, L. Darré, T. Durroux, M. Busnelli, M. Pezet, F. Rebeille, J. Jouhet, B. Mouillac, C. Domene, B. Chini, V. Cherezov, and C.J. Moreau. (2021). The ligand-bound state of a G protein-coupled receptor stabilizes the interaction of functional cholesterol molecules. J Lipid Res 100059. [Epub: Ahead of Print] 33647276
Lesca, E., V. Panneels, and G.F.X. Schertler. (2018). The role of water molecules in phototransduction of retinal proteins and G protein-coupled receptors. Faraday Discuss 207: 27-37. 29410984
Li, A.J., W. Xie, M. Wang, and S.C. Xu. (2017). Molecular Mechanism and Dynamics of -Deoxyephedrine Moving through Molecular Channels within DR. ACS Omega 2: 8896-8910. 31457418
Li, S., B. Wu, and W. Han. (2019). Parametrization of MARTINI for Modeling Hinging Motions in Membrane Proteins. J Phys Chem B 123: 2254-2269. 30762370
Li, X., L. Staszewski, H. Xu, K. Durick, M. Zoller, and E. Adler. (2002). Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. USA 99: 4692-4696. 11917125
Li, Z., Z. Zhou, and L. Zhang. (2020). Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016-2019): a patent review. Expert Opin Ther Pat 30: 27-38. 31771391
Lindsay, N.M. and G. Scherrer. (2019). Countering opioid side effects. Science 365: 1246-1247. 31604226
Liu, B., L. Qiao, K. Liu, J. Liu, T.J. Piccinni-Ash, and Z.F. Chen. (2022). Molecular and neural basis of pleasant touch sensation. Science 376: 483-491. 35482870
Liu, J., K. Yang, Y. Jin, Y. Liu, Y. Chen, X. Zhang, S. Yu, E. Song, S. Chen, J. Zhang, G. Jing, and R. An. (2020). H3 relaxin protects against calcium oxalate crystal-induced renal inflammatory pyroptosis. Cell Prolif 53: e12902. 32945585
Low, W.Y., B.D. Rosen, Y. Ren, D.M. Bickhart, T.H. To, F.J. Martin, K. Billis, T.S. Sonstegard, S.T. Sullivan, S. Hiendleder, J.L. Williams, M.P. Heaton, and T.P.L. Smith. (2022). Gaur genome reveals expansion of sperm odorant receptors in domesticated cattle. BMC Genomics 23: 344. 35508966
Lu, Y.C., O.V. Nazarko, R. Sando, 3rd, G.S. Salzman, N.S. Li, T.C. Südhof, and D. Araç. (2015). Structural Basis of Latrophilin-FLRT-UNC5 Interaction in Cell Adhesion. Structure 23: 1678-1691. 26235030
Lum, L. and P.A. Beachy. (2004). The Hedgehog response network: sensors, switches, and routers. Science 304: 1755-1759. 15205520
Luo, J., O.V. Lushchak, P. Goergen, M.J. Williams, and D.R. Nässel. (2014). Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior. PLoS One 9: e99732. 24923784
Luo, W., Y. Wang, and G. Reiser. (2007). p24A, a type I transmembrane protein, controls ARF1-dependent resensitization of protease-activated receptor-2 by influence on receptor trafficking. J. Biol. Chem. 282: 30246-30255. 17693410
MacNeil, D.J., J.L. Occi, P.J. Hey, C.D. Strader, and M.P. Graziano. (1994). Cloning and expression of a human glucagon receptor. Biochem. Biophys. Res. Commun. 198: 328-334. 7507321
Maeda, S., Q. Qu, M.J. Robertson, G. Skiniotis, and B.K. Kobilka. (2019). Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364: 552-557. 31073061
Makkonen, K., M. Jännäri, L. Crisóstomo, M. Kuusi, K. Patyra, V. Melnyk, V.M. Linnossuo, J.O. Ojala, R. Ravi, C. Löf, J.A. Mäkelä, P.J. Miettinen, S. Laakso, M. Ojaniemi, J. Jääskeläinen, M. Laakso, F. Bossowski, B. Sawicka, K. Stożek, A. Bossowski, G. Kleinau, P. Scheerer, F. Finngen, M.P. Reeve, and J. Kero. (2024). Mechanisms of thyrotropin receptor-mediated phenotype variability deciphered by gene mutations and M453T knock-in model. JCI Insight. [Epub: Ahead of Print] 38194289
Mao, C., P. Xiao, X.N. Tao, J. Qin, Q.T. He, C. Zhang, S.C. Guo, Y.Q. Du, L.N. Chen, D.D. Shen, Z.S. Yang, H.Q. Zhang, S.M. Huang, Y.H. He, J. Cheng, Y.N. Zhong, P. Shang, J. Chen, D.L. Zhang, Q.L. Wang, M.X. Liu, G.Y. Li, Y. Guo, H.E. Xu, C. Wang, C. Zhang, S. Feng, X. Yu, Y. Zhang, and J.P. Sun. (2023). Unsaturated bond recognition leads to biased signal in a fatty acid receptor. Science 380: eadd6220. 36862765
Martynowycz, M.W., A. Shiriaeva, X. Ge, J. Hattne, B.L. Nannenga, V. Cherezov, and T. Gonen. (2021). MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP. Proc. Natl. Acad. Sci. USA 118:. 34462357
Maruyama, T., Y. Miyamoto, T. Nakamura, Y. Tamai, H. Okada, E. Sugiyama, T. Nakamura, H. Itadani, and K. Tanaka. (2002). Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298: 714-719. 12419312
Mary, S., M. Damian, M. Louet, N. Floquet, J.A. Fehrentz, J. Marie, J. Martinez, and J.L. Banères. (2012). Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc. Natl. Acad. Sci. USA 109: 8304-8309. 22573814
Maser, R.L. and J.P. Calvet. (2020). Adhesion GPCRs as a paradigm for understanding polycystin-1 G protein regulation. Cell Signal 72: 109637. 32305667
Mathew, D., B. Ataman, J. Chen, Y. Zhang, S. Cumberledge, and V. Budnik. (2005). Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science 310: 1344-1347. 16311339
Mattle, D., B. Kuhn, J. Aebi, M. Bedoucha, D. Kekilli, N. Grozinger, A. Alker, M.G. Rudolph, G. Schmid, G.F.X. Schertler, M. Hennig, J. Standfuss, and R.J.P. Dawson. (2018). Ligand channel in pharmacologically stabilized rhodopsin. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 29555765
Mazella, J. (2022). Deciphering Mechanisms of Action of Sortilin/Neurotensin Receptor-3 in the Proliferation Regulation of Colorectal and Other Cancers. Int J Mol Sci 23:. 36233189
McKimmie, C.S., M.D. Singh, K. Hewit, O. Lopez-Franco, M. Le Brocq, S. Rose-John, K.M. Lee, A.H. Baker, R. Wheat, D.J. Blackbourn, R.J. Nibbs, and G.J. Graham. (2013). An analysis of the function and expression of D6 on lymphatic endothelial cells. Blood 121: 3768-3777. 23479571
Melyan, Z., E.E. Tarttelin, J. Bellingham, R.J. Lucas, and M.W. Hankins. (2005). Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433: 741-745. 15674244
Menon, I., T. Huber, S. Sanyal, S. Banerjee, P. Barré, S. Canis, J.D. Warren, J. Hwa, T.P. Sakmar, and A.K. Menon. (2011). Opsin is a phospholipid flippase. Curr. Biol. 21: 149-153. 21236677
Mereu, L., M.K. Morf, S. Spiri, P. Gutierrez, J.M. Escobar-Restrepo, M. Daube, M. Walser, and A. Hajnal. (2020). Polarized epidermal growth factor secretion ensures robust vulval cell fate specification in. Development 147:. 32439759
Meyer, R.C., M.M. Giddens, S.A. Schaefer, and R.A. Hall. (2013). GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proc. Natl. Acad. Sci. USA 110: 9529-9534. 23690594
Minakami, R., F. Katsuki, T. Yamamoto, K. Nakamura, and H. Sugiyama. (1994). Molecular cloning and the functional expression of two isoforms of human metabotropic glutamate receptor subtype 5. Biochem. Biophys. Res. Commun. 199: 1136-1143. 7908515
Mishra, S., M.I. Shah, S. Udhaya Kumar, D. Thirumal Kumar, C. Gopalakrishnan, A.M. Al-Subaie, R. Magesh, C. George Priya Doss, and B. Kamaraj. (2021). Network analysis of transcriptomics data for the prediction and prioritization of membrane-associated biomarkers for idiopathic pulmonary fibrosis (IPF) by bioinformatics approach. Adv Protein Chem Struct Biol 123: 241-273. 33485486
Miyajima, R., K. Sakai, Y. Otani, T. Wadatsu, Y. Sakata, Y. Nishikawa, M. Tanaka, Y. Yamashita, M. Hayashi, K. Kondo, and T. Hayashi. (2020). Novel Tetrafunctional Probes Identify Target Receptors and Binding Sites of Small-Molecule Drugs from Living Systems. ACS Chem Biol 15: 2364-2373. 32786265
Moreno-Salinas, A.L., M. Avila-Zozaya, P. Ugalde-Silva, D.A. Hernández-Guzmán, F. Missirlis, and A.A. Boucard. (2019). Latrophilins: A Neuro-Centric View of an Evolutionary Conserved Adhesion G Protein-Coupled Receptor Subfamily. Front Neurosci 13: 700. 31354411
Morra, G., A.M. Razavi, A.K. Menon, and G. Khelashvili. (2022). Cholesterol occupies the lipid translocation pathway to block phospholipid scrambling by a G protein-coupled receptor. Structure 30: 1208-1217.e2. 35660161
Morrow JM. and Chang BS. (2015). Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy. Biochemistry. 54(29):4507-18. 26098991
Mukhopadhyay, S., X. Wen, N. Ratti, A. Loktev, L. Rangell, S.J. Scales, and P.K. Jackson. (2013). The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152: 210-223. 23332756
Murillo-Rodriguez, E., J.C. Pastrana-Trejo, M. Salas-Crisóstomo, and M. de-la-Cruz. (2017). The endocannabinoid system modulating levels of consciousness, emotions and likely dream contents. CNS Neurol Disord Drug Targets. [Epub: Ahead of Print] 28240187
Musilova, Z., F. Cortesi, M. Matschiner, W.I.L. Davies, J.S. Patel, S.M. Stieb, F. de Busserolles, M. Malmstrøm, O.K. Tørresen, C.J. Brown, J.K. Mountford, R. Hanel, D.L. Stenkamp, K.S. Jakobsen, K.L. Carleton, S. Jentoft, J. Marshall, and W. Salzburger. (2019). Vision using multiple distinct rod opsins in deep-sea fishes. Science 364: 588-592. 31073066
Myers, B.R., L. Neahring, Y. Zhang, K.J. Roberts, and P.A. Beachy. (2017). Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 29229834
Nakabayashi, K., H. Matsumi, A. Bhalla, J. Bae, S. Mosselman, S.Y. Hsu, and A.J. Hsueh. (2002). Thyrostimulin, a heterodimer of two new human glycoprotein hormone subunits, activates the thyroid-stimulating hormone receptor. J Clin Invest 109: 1445-1452. 12045258
Neuhaus, E.M., W. Zhang, L. Gelis, Y. Deng, J. Noldus, and H. Hatt. (2009). Activation of an olfactory receptor inhibits proliferation of prostate cancer cells. J. Biol. Chem. 284: 16218-16225. 19389702
Newman, E.A., B.X. Chai, W. Zhang, J.Y. Li, J.B. Ammori, and M.W. Mulholland. (2006). Activation of the melanocortin-4 receptor mobilizes intracellular free calcium in immortalized hypothalamic neurons. J Surg Res 132: 201-207. 16580690
Obi, P. and S. Natesan. (2022). Membrane Lipids Are an Integral Part of Transmembrane Allosteric Sites in GPCRs: A Case Study of Cannabinoid CB1 Receptor Bound to a Negative Allosteric Modulator, ORG27569, and Analogs. J Med Chem 65: 12240-12255. 36066412
Okada, T. and K. Palczewski. (2001). Crystal structure of rhodopsin: implications for vision and beyond. Curr. Opin. Struct. Biol. 11: 420-426. 11495733
Palmisano, I., P. Bagnato, A. Palmigiano, G. Innamorati, G. Rotondo, D. Altimare, C. Venturi, E.V. Sviderskaya, R. Piccirillo, M. Coppola, V. Marigo, B. Incerti, A. Ballabio, E.M. Surace, C. Tacchetti, D.C. Bennett, and M.V. Schiaffino. (2008). The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells. Hum Mol Genet 17: 3487-3501. 18697795
Pauli, A., M.L. Norris, E. Valen, G.L. Chew, J.A. Gagnon, S. Zimmerman, A. Mitchell, J. Ma, J. Dubrulle, D. Reyon, S.Q. Tsai, J.K. Joung, A. Saghatelian, and A.F. Schier. (2014). Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343: 1248636. 24407481
Pennisi, E. (2019). Jeepers, creatures, where''d you get those peepers? Science 364: 520. 31073049
Persichilli, C., G. Senczuk, S. Mastrangelo, M. Marusi, J.T. van Kaam, R. Finocchiaro, M. Di Civita, M. Cassandro, and F. Pilla. (2023). Exploring genome-wide differentiation and signatures of selection in Italian and North American Holstein populations. J Dairy Sci. [Epub: Ahead of Print] 37291034
Petersen, J., S.C. Wright, D. Rodríguez, P. Matricon, N. Lahav, A. Vromen, A. Friedler, J. Strömqvist, S. Wennmalm, J. Carlsson, and G. Schulte. (2017). Agonist-induced dimer dissociation as a macromolecular step in G protein-coupled receptor signaling. Nat Commun 8: 226. 28790300
Philippe, C., F. Wauquier, B. Lyan, V. Coxam, and Y. Wittrant. (2016). GPR40, a free fatty acid receptor, differentially impacts osteoblast behavior depending on differentiation stage and environment. Mol. Cell Biochem 412: 197-208. 26699911
Piechnick, R., E. Ritter, P.W. Hildebrand, O.P. Ernst, P. Scheerer, K.P. Hofmann, and M. Heck. (2012). Effect of channel mutations on the uptake and release of the retinal ligand in opsin. Proc. Natl. Acad. Sci. USA 109: 5247-5252. 22431612
Pluznick, J.L., R.J. Protzko, H. Gevorgyan, Z. Peterlin, A. Sipos, J. Han, I. Brunet, L.X. Wan, F. Rey, T. Wang, S.J. Firestein, M. Yanagisawa, J.I. Gordon, A. Eichmann, J. Peti-Peterdi, and M.J. Caplan. (2013). Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl. Acad. Sci. USA 110: 4410-4415. 23401498
Poudel, H. and D.M. Leitner. (2022). Energy Transport in Class B GPCRs: Role of Protein-Water Dynamics and Activation. J Phys Chem B 126: 8362-8373. 36256609
Pupovac, A. and R. Sluyter. (2016). Roles of extracellular nucleotides and P2 receptors in ectodomain shedding. Cell Mol Life Sci. [Epub: Ahead of Print] 27180276
Qi, X., L. Friedberg, R. De Bose-Boyd, T. Long, and X. Li. (2020). Sterols in an intramolecular channel of Smoothened mediate Hedgehog signaling. Nat Chem Biol. [Epub: Ahead of Print] 32929279
Qi, X., P. Schmiege, E. Coutavas, and X. Li. (2018). Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex. Science 362:. 30139912
Qiao, A., S. Han, X. Li, Z. Li, P. Zhao, A. Dai, R. Chang, L. Tai, Q. Tan, X. Chu, L. Ma, T.S. Thorsen, S. Reedtz-Runge, D. Yang, M.W. Wang, P.M. Sexton, D. Wootten, F. Sun, Q. Zhao, and B. Wu. (2020). Structural basis of G and G recognition by the human glucagon receptor. Science 367: 1346-1352. 32193322
Raddatz, R., A.E. Wilson, R. Artymyshyn, J.A. Bonini, B. Borowsky, L.W. Boteju, S. Zhou, E.V. Kouranova, R. Nagorny, M.S. Guevarra, M. Dai, G.S. Lerman, P.J. Vaysse, T.A. Branchek, C. Gerald, C. Forray, and N. Adham. (2000). Identification and characterization of two neuromedin U receptors differentially expressed in peripheral tissues and the central nervous system. J. Biol. Chem. 275: 32452-32459. 10899166
Regan, S.L., J.R. Hufgard, E.M. Pitzer, C. Sugimoto, Y.C. Hu, M.T. Williams, and C.V. Vorhees. (2019). Knockout of latrophilin-3 in Sprague-Dawley rats causes hyperactivity, hyper-reactivity, under-response to amphetamine, and disrupted dopamine markers. Neurobiol Dis 130: 104494. [Epub: Ahead of Print] 31176715
Ren, A., C. Moon, W. Zhang, C. Sinha, S. Yarlagadda, K. Arora, X. Wang, J. Yue, K. Parthasarathi, R. Heil-Chapdelaine, G. Tigyi, and A.P. Naren. (2014). Asymmetrical macromolecular complex formation of lysophosphatidic acid receptor 2 (LPA2) mediates gradient sensing in fibroblasts. J. Biol. Chem. 289: 35757-35769. 25542932
Ren, L., Z. Jing, F. Xia, J.Z. Zhang, and Y. Li. (2022). Toxic Effect of Fullerene and Its Derivatives upon the Transmembrane β-Adrenergic Receptors. Molecules 27:. 35889435
Robertson, N., M. Rappas, A.S. Doré, J. Brown, G. Bottegoni, M. Koglin, J. Cansfield, A. Jazayeri, R.M. Cooke, and F.H. Marshall. (2018). Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature 553: 111-114. 29300009
Sagasti, A., O. Hobert, E.R. Troemel, G. Ruvkun, and C.I. Bargmann. (1999). Alternative olfactory neuron fates are specified by the LIM homeobox gene lim-4. Genes Dev. 13: 1794-1806. 10421632
Sakamoto, C., M. Fujinoki, M. Kitazawa, and S. Obayashi. (2021). Serotonergic signals enhanced hamster sperm hyperactivation. J Reprod Dev. [Epub: Ahead of Print] 33980767
Santos-Carvalho, A., A.R. Álvaro, J. Martins, A.F. Ambrósio, and C. Cavadas. (2014). Emerging novel roles of neuropeptide Y in the retina: from neuromodulation to neuroprotection. Prog Neurobiol 112: 70-79. 24184719
Santos-Otte, P., H. Leysen, J. van Gastel, J.O. Hendrickx, B. Martin, and S. Maudsley. (2019). G Protein-Coupled Receptor Systems and Their Role in Cellular Senescence. Comput Struct Biotechnol J 17: 1265-1277. 31921393
Sarasola, L.I., C.L. Del Torrent, A. Pérez-Arévalo, J. Argerich, N. Casajuana-Martín, A. Chevigné, V. Fernández-Dueñas, S. Ferré, L. Pardo, and F. Ciruela. (2022). The ADORA1 mutation linked to early-onset Parkinson''s disease alters adenosine A-A receptor heteromer formation and function. Biomed Pharmacother 156: 113896. 36279718
Sarkar, A., A. Mitra, and A. Borics. (2023). All-Atom Molecular Dynamics Simulations Indicated the Involvement of a Conserved Polar Signaling Channel in the Activation Mechanism of the Type I Cannabinoid Receptor. Int J Mol Sci 24:. 36835641
Sarkar, P. and A. Chattopadhyay. (2020). Cholesterol interaction motifs in G protein-coupled receptors: Slippery hot spots? Wiley Interdiscip Rev Syst Biol Med e1481. [Epub: Ahead of Print] 32032482
Sebag, J.A. and P.M. Hinkle. (2009). Regions of melanocortin 2 (MC2) receptor accessory protein necessary for dual topology and MC2 receptor trafficking and signaling. J. Biol. Chem. 284: 610-618. 18981183
Sedra, L., J.P. Paluzzi, and A.B. Lange. (2018). Characterization and expression of a long neuropeptide F (NPF) receptor in the Chagas disease vector Rhodnius prolixus. PLoS One 13: e0202425. 30114273
Sengupta, P., J.H. Chou, and C.I. Bargmann. (1996). odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84: 899-909. 8601313
Shalaeva, D.N., D.A. Cherepanov, M.Y. Galperin, G. Vriend, and A.Y. Mulkidjanian. (2019). G protein-coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity. Biochim. Biophys. Acta. Biomembr 1861: 183051. [Epub: Ahead of Print] 31449800
Shalaeva, D.N., M.Y. Galperin, and A.Y. Mulkidjanian. (2015). Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins. Biol Direct 10: 63. 26472483
Sharp, E.L., N.J. Davis-Poynter, and H.E. Farrell. (2009). Analysis of the subcellular trafficking properties of murine cytomegalovirus M78, a 7 transmembrane receptor homologue. J Gen Virol 90: 59-68. 19088273
Singhal, A., Y. Guo, M. Matkovic, G. Schertler, X. Deupi, E.C. Yan, and J. Standfuss. (2016). Structural role of the T94I rhodopsin mutation in congenital stationary night blindness. EMBO Rep 17: 1431-1440. 27458239
Singleton, P.A., S. Chatchavalvanich, P. Fu, J. Xing, A.A. Birukova, J.A. Fortune, A.M. Klibanov, J.G. Garcia, and K.G. Birukov. (2009). Akt-mediated transactivation of the S1P1 receptor in caveolin-enriched microdomains regulates endothelial barrier enhancement by oxidized phospholipids. Circ Res 104: 978-986. 19286607
Siu, F.Y., M. He, C. de Graaf, G.W. Han, D. Yang, Z. Zhang, C. Zhou, Q. Xu, D. Wacker, J.S. Joseph, W. Liu, J. Lau, V. Cherezov, V. Katritch, M.W. Wang, and R.C. Stevens. (2013). Structure of the human glucagon class B G-protein-coupled receptor. Nature 499: 444-449. 23863937
Sommer, A. and M.A. Lemmon. (2018). Smoothening out the patches. Science 362: 26-27. 30287647
Sone, M. and S.J. Orlow. (2007). The ocular albinism type 1 gene product, OA1, spans intracellular membranes 7 times. Exp Eye Res 85: 806-816. 17920058
Song, G., D. Yang, Y. Wang, C. de Graaf, Q. Zhou, S. Jiang, K. Liu, X. Cai, A. Dai, G. Lin, D. Liu, F. Wu, Y. Wu, S. Zhao, L. Ye, G.W. Han, J. Lau, B. Wu, M.A. Hanson, Z.J. Liu, M.W. Wang, and R.C. Stevens. (2017). Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546: 312-315. 28514449
Song, H.S., S.H. Lee, E.H. Oh, and T.H. Park. (2009). Expression, solubilization and purification of a human olfactory receptor from Escherichia coli. Curr. Microbiol. 59: 309-314. 19506949
Song, K., H. Wang, G.B. Kamm, J. Pohle, F. de Castro Reis, P. Heppenstall, H. Wende, and J. Siemens. (2016). The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science. [Epub: Ahead of Print] 27562954
Spannl, S., T. Buhl, I. Nellas, S.A. Zeidan, K.V. Iyer, H. Khaliullina, C. Schultz, A. Nadler, N.A. Dye, and S. Eaton. (2020). Glycolysis regulates Hedgehog signalling via the plasma membrane potential. EMBO. J. 39: e101767. 33021744
Speca, D.J., D.M. Lin, P.W. Sorensen, E.Y. Isacoff, J. Ngai, and A.H. Dittman. (1999). Functional identification of a goldfish odorant receptor. Neuron. 23: 487-498. 10433261
Stauch, B., L.C. Johansson, J.D. McCorvy, N. Patel, G.W. Han, X.P. Huang, C. Gati, A. Batyuk, S.T. Slocum, A. Ishchenko, W. Brehm, T.A. White, N. Michaelian, C. Madsen, L. Zhu, T.D. Grant, J.M. Grandner, A. Shiriaeva, R.H.J. Olsen, A.R. Tribo, S. Yous, R.C. Stevens, U. Weierstall, V. Katritch, B.L. Roth, W. Liu, and V. Cherezov. (2019). Structural basis of ligand recognition at the human MT melatonin receptor. Nature 569: 284-288. 31019306
Suckow, A.T., D. Polidori, W. Yan, S. Chon, J.Y. Ma, J. Leonard, and C.P. Briscoe. (2014). Alteration of the glucagon axis in GPR120 (FFAR4) knockout mice: a role for GPR120 in glucagon secretion. J. Biol. Chem. 289: 15751-15763. 24742677
Sukhotnik, I., Y. Ben-Shahar, Y. Pollak, S. Cohen, H. Moran-Lev, T. Koppelmann, and M. Gorenberg. (2021). Intestinal dysmotility after bowel resection in rats is associated with decreased ghrelin and vimentin expression and loss of intestinal cells of Cajal. Am. J. Physiol. Gastrointest Liver Physiol 320: G283-G294. 33325807
Sung, T.S., S.B. Moon, B.A. Perrino, K.M. Sanders, and S.D. Koh. (2022). Altered functional responses by PAR1 agonist in murine dextran sodium sulphate-treated colon. Sci Rep 12: 16746. 36202914
Sveidahl Johansen, O., T. Ma, J.B. Hansen, L.K. Markussen, R. Schreiber, L. Reverte-Salisa, H. Dong, D.P. Christensen, W. Sun, T. Gnad, I. Karavaeva, T.S. Nielsen, S. Kooijman, C. Cero, O. Dmytriyeva, Y. Shen, M. Razzoli, S.L. O''Brien, E.N. Kuipers, C.H. Nielsen, W. Orchard, N. Willemsen, N.Z. Jespersen, M. Lundh, E.G. Sustarsic, C.M. Hallgren, M. Frost, S. McGonigle, M.S. Isidor, C. Broholm, O. Pedersen, J.B. Hansen, N. Grarup, T. Hansen, A. Kjær, J.G. Granneman, M.M. Babu, D. Calebiro, S. Nielsen, M. Rydén, R. Soccio, P.C.N. Rensen, J.T. Treebak, T.W. Schwartz, B. Emanuelli, A. Bartolomucci, A. Pfeifer, R. Zechner, C. Scheele, S. Mandrup, and Z. Gerhart-Hines. (2021). Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell 184: 3502-3518.e33. 34048700
Szlenk, C.T., J.B. Gc, and S. Natesan. (2021). Membrane-facilitated receptor access and binding mechanisms of long-acting β2-adrenergic receptor (β2-AR) agonists. Mol Pharmacol. [Epub: Ahead of Print] 34334369
Tafesse, F.G., C.P. Guimaraes, T. Maruyama, J.E. Carette, S. Lory, T.R. Brummelkamp, and H.L. Ploegh. (2014). GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas aeruginosa exotoxin A, localizes to the Golgi and is cleaved by furin. J. Biol. Chem. 289: 24005-24018. 25031321
Takao, D., L. Wang, A. Boss, and K.J. Verhey. (2017). Protein Interaction Analysis Provides a Map of the Spatial and Temporal Organization of the Ciliary Gating Zone. Curr. Biol. 27: 2296-2306.e3. 28736169
Tang, M., F. He, L. Ma, P. Liu, J. Wang, and X. Zhu. (2018). Bradykinin Receptors in Ischemic Injury. Curr Neurovasc Res 15: 359-366. 30468128
Tang, X., L. Zhang, T. Ma, M. Wang, B. Li, L. Jiang, Y. Yan, and Y. Guo. (2020). Molecular mechanisms that regulate export of the planar cell-polarity protein Frizzled-6 out of the endoplasmic reticulum. J. Biol. Chem. [Epub: Ahead of Print] 32376691
Tao, J., M.E. Hildebrand, P. Liao, M.C. Liang, G. Tan, S. Li, T.P. Snutch, and T.W. Soong. (2008). Activation of corticotropin-releasing factor receptor 1 selectively inhibits CaV3.2 T-type calcium channels. Mol Pharmacol 73: 1596-1609. 18292205
Thimm, C., L. Erichsen, W. Wruck, and J. Adjaye. (2023). Unveiling Angiotensin II and Losartan-Induced Gene Regulatory Networks Using Human Urine-Derived Podocytes. Int J Mol Sci 24:. 37445727
Thor, D. and I. Liebscher. (2023). Adhesion G protein-coupled receptors-Structure and functions. Prog Mol Biol Transl Sci 195: 1-25. 36707149
Tian, H., K.M. Gunnison, M.A. Kazmi, T.P. Sakmar, and T. Huber. (2022). FRET sensors reveal the retinal entry pathway in the G protein-coupled receptor rhodopsin. iScience 25: 104060. 35355518
Toda, Y., M.C. Ko, Q. Liang, E.T. Miller, A. Rico-Guevara, T. Nakagita, A. Sakakibara, K. Uemura, T. Sackton, T. Hayakawa, S.Y.W. Sin, Y. Ishimaru, T. Misaka, P. Oteiza, J. Crall, S.V. Edwards, W. Buttemer, S. Matsumura, and M.W. Baldwin. (2021). Early origin of sweet perception in the songbird radiation. Science 373: 226-231. 34244416
Urizar-Arenaza, I., N. Osinalde, V. Akimov, M. Puglia, L. Candenas, F.M. Pinto, I. Muñoa-Hoyos, M. Gianzo, R. Matorras, J. Irazusta, B. Blagoev, N. Subiran, and I. Kratchmarova. (2019). Phosphoproteomic and Functional Analyses Reveal Sperm-specific Protein Changes Downstream of Kappa Opioid Receptor in Human Spermatozoa. Mol. Cell Proteomics 18: S118-S131. 30622161
Utsumi, T., H. Ohta, Y. Kayano, N. Sakurai, and Y. Ozoe. (2005). The N-terminus of B96Bom, a Bombyx mori G-protein-coupled receptor, is N-myristoylated and translocated across the membrane. FEBS J. 272: 472-481. 15654885
Vendelin, J., V. Pulkkinen, M. Rehn, A. Pirskanen, A. Räisänen-Sokolowski, A. Laitinen, L.A. Laitinen, J. Kere, and T. Laitinen. (2005). Characterization of GPRA, a novel G protein-coupled receptor related to asthma. Am J Respir Cell Mol Biol 33: 262-270. 15947423
Vickery, O.N., C.A. Carvalheda, S.A. Zaidi, A.V. Pisliakov, V. Katritch, and U. Zachariae. (2017). Intracellular Transfer of Na+ in an Active-State G-Protein-Coupled Receptor. Structure. [Epub: Ahead of Print] 29249607
von Kügelgen, I. and K. Hoffmann. (2016). Pharmacology and structure of P2Y receptors. Neuropharmacology 104: 50-61. 26519900
von Molitor, E., K. Riedel, M. Krohn, R. Rudolf, M. Hafner, and T. Cesetti. (2020). An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Arch 472: 1667-1691. 33030576
Wacker, D., S. Wang, J.D. McCorvy, R.M. Betz, A.J. Venkatakrishnan, A. Levit, K. Lansu, Z.L. Schools, T. Che, D.E. Nichols, B.K. Shoichet, R.O. Dror, and B.L. Roth. (2017). Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell 168: 377-389.e12. 28129538
Wang, D., H.M. Stoveken, S. Zucca, M. Dao, C. Orlandi, C. Song, I. Masuho, C. Johnston, K.J. Opperman, A.C. Giles, M.S. Gill, E.A. Lundquist, B. Grill, and K.A. Martemyanov. (2019). Genetic behavioral screen identifies an orphan anti-opioid system. Science 365: 1267-1273. 31416932
Wang, J.H., M.J. Hu, X.X. Shao, D. Wei, Y.L. Liu, Z.G. Xu, and Z.Y. Guo. (2018). Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands. Arch Biochem Biophys 646: 24-30. 29601823
Wang, L., G. Lee, C. Kuei, X. Yao, A. Harrington, P. Bonaventure, T.W. Lovenberg, and C. Liu. (2019). GPR139 and Dopamine D2 Receptor Co-express in the Same Cells of the Brain and May Functionally Interact. Front Neurosci 13: 281. 30971885
Wang, L., Y. Iwasaki, K.K. Andra, K. Pandey, A.K. Menon, and P. Bütikofer. (2018). Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein-coupled receptor and TMEM16 scramblases. J. Biol. Chem. [Epub: Ahead of Print] 30287690
Wang, Y., K. Bugge, B.B. Kragelund, and K. Lindorff-Larsen. (2018). Role of protein dynamics in transmembrane receptor signalling. Curr. Opin. Struct. Biol. 48: 74-82. 29136528
Warne, T., P.C. Edwards, A.S. Doré, A.G.W. Leslie, and C.G. Tate. (2019). Molecular basis for high-affinity agonist binding in GPCRs. Science 364: 775-778. 31072904
Warpeha, K.M., S. Upadhyay, J. Yeh, J. Adamiak, S.I. Hawkins, Y.R. Lapik, M.B. Anderson, and L.S. Kaufman. (2007). The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol. 143: 1590-1600. 17322342
Watson, S.J., A.J. Brown, and N.D. Holliday. (2012). Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 81: 631-642. 22282525
Weng, W.H., Y.T. Li, and H.J. Hsu. (2017). Activation-Induced Conformational Changes of Dopamine D3 Receptor Promote the Formation of the Internal Water Channel. Sci Rep 7: 12792. 28986565
Wescott, M.P., I. Kufareva, C. Paes, J.R. Goodman, Y. Thaker, B.A. Puffer, E. Berdougo, J.B. Rucker, T.M. Handel, and B.J. Doranz. (2016). Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proc. Natl. Acad. Sci. USA 113: 9928-9933. 27543332
Wise, A., S.M. Foord, N.J. Fraser, A.A. Barnes, N. Elshourbagy, M. Eilert, D.M. Ignar, P.R. Murdock, K. Steplewski, A. Green, A.J. Brown, S.J. Dowell, P.G. Szekeres, D.G. Hassall, F.H. Marshall, S. Wilson, and N.B. Pike. (2003). Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278: 9869-9874. 12522134
Wistrand, M., L. Käll, and E.L. Sonnhammer. (2006). A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein. Sci. 15: 509-521. 16452613
Woo, D.H., J.Y. Bae, M.H. Nam, H. An, Y.H. Ju, J. Won, J.H. Choi, E.M. Hwang, K.S. Han, Y.C. Bae, and C.J. Lee. (2018). Activation of Astrocytic μ-opioid Receptor Elicits Fast Glutamate Release Through TREK-1-Containing K2P Channel in Hippocampal Astrocytes. Front Cell Neurosci 12: 319. 30319359
Wu, H., C. Wang, K.J. Gregory, G.W. Han, H.P. Cho, Y. Xia, C.M. Niswender, V. Katritch, J. Meiler, V. Cherezov, P.J. Conn, and R.C. Stevens. (2014). Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344: 58-64. 24603153
Wu, H., D. Wacker, M. Mileni, V. Katritch, G.W. Han, E. Vardy, W. Liu, A.A. Thompson, X.P. Huang, F.I. Carroll, S.W. Mascarella, R.B. Westkaemper, P.D. Mosier, B.L. Roth, V. Cherezov, and R.C. Stevens. (2012). Structure of the human κ-opioid receptor in complex with JDTic. Nature 485: 327-332. 22437504
Wu, H., Y. Gao, C. Ma, Q. Shen, J. Wang, M. Lv, C. Liu, H. Cheng, F. Zhu, S. Tian, N. Elshewy, X. Ni, Q. Tan, X. Xu, P. Zhou, Z. Wei, F. Zhang, X. He, and Y. Cao. (2020). A novel hemizygous loss-of-function mutation in ADGRG2 causes male infertility with congenital bilateral absence of the vas deferens. J Assist Reprod Genet. [Epub: Ahead of Print] 32314195
Wüller, S., B. Wiesner, A. Löffler, J. Furkert, G. Krause, R. Hermosilla, M. Schaefer, R. Schülein, W. Rosenthal, and A. Oksche. (2004). Pharmacochaperones post-translationally enhance cell surface expression by increasing conformational stability of wild-type and mutant vasopressin V2 receptors. J. Biol. Chem. 279: 47254-47263. 15319430
Wyant, G.A., W. Yu, I.P. Doulamis, R.S. Nomoto, M.Y. Saeed, T. Duignan, J.D. McCully, and W.G. Kaelin, Jr. (2022). Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists. Science 377: 621-629. 35926043
Xiang, M., X. Qian, L. Han, H. Wang, J. Wang, W. Liu, Y. Gu, S. Yao, J. Yang, Y. Zhang, Y. Peng, and Z. Zhang. (2023). Aquaporin-8 ameliorates hepatic steatosis through farnesoid X receptor in obese mice. iScience 26: 106561. 37123234
Xu, H., S. Lin, Z. Zhou, D. Li, X. Zhang, M. Yu, R. Zhao, Y. Wang, J. Qian, X. Li, B. Li, C. Wei, K. Chen, T. Yoshimura, J.M. Wang, and J. Huang. (2023). New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 1-38. [Epub: Ahead of Print] 37198402
Xu, W., L. Wu, S. Liu, X. Liu, X. Cao, C. Zhou, J. Zhang, Y. Fu, Y. Guo, Y. Wu, Q. Tan, L. Wang, J. Liu, L. Jiang, Z. Fan, Y. Pei, J. Yu, J. Cheng, S. Zhao, X. Hao, Z.J. Liu, and T. Hua. (2022). Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science 377: 1298-1304. 36108005
Xu, W., X. Wang, A.M. Tocker, P. Huang, M.E. Reith, L.Y. Liu-Chen, A.B. Smith Iii, and S. Kortagere. (2016). Functional characterization of a Novel Series of Biased Signaling Dopamine D3 Receptor Agonists. ACS Chem Neurosci. [Epub: Ahead of Print] 27801563
Xu, Y.L., R.K. Reinscheid, S. Huitron-Resendiz, S.D. Clark, Z. Wang, S.H. Lin, F.A. Brucher, J. Zeng, N.K. Ly, S.J. Henriksen, L. de Lecea, and O. Civelli. (2004). Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron. 43: 487-497. 15312648
Yamada, Y., T. Reisine, S.F. Law, Y. Ihara, A. Kubota, S. Kagimoto, M. Seino, Y. Seino, G.I. Bell, and S. Seino. (1992). Somatostatin receptors, an expanding gene family: cloning and functional characterization of human SSTR3, a protein coupled to adenylyl cyclase. Mol Endocrinol 6: 2136-2142. 1337145
Yang, Y., Y. Cui, W. Wang, L. Zhang, L. Bufford, S. Sasaki, Z. Fan, and H. Nishimura. (2004). Molecular and functional characterization of a vasotocin-sensitive aquaporin water channel in quail kidney. Am. J. Physiol. Regul Integr Comp Physiol 287: R915-924. 15205186
Ye, R.D., S.L. Cavanagh, O. Quehenberger, E.R. Prossnitz, and C.G. Cochrane. (1992). Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem. Biophys. Res. Commun. 184: 582-589. 1374236
Yee, D.C., M.A. Shlykov, A. Västermark, V.S. Reddy, S. Arora, E.I. Sun, and M.H. Saier, Jr. (2013). The transporter-opsin-G protein-coupled receptor (TOG) superfamily. FEBS J. 280: 5780-5800. 23981446
Yeliseev, A. and K. Gawrisch. (2017). Expression and NMR Structural Studies of Isotopically Labeled Cannabinoid Receptor Type II. Methods Enzymol 593: 387-403. 28750812
Yeliseev, A.A., K. Zoretich, L. Hooper, W. Teague, L. Zoubak, K.G. Hines, and K. Gawrisch. (2021). Site-selective labeling and electron paramagnetic resonance studies of human cannabinoid receptor CB. Biochim. Biophys. Acta. Biomembr 1863: 183621. [Epub: Ahead of Print] 33865808
Yen, Y.C., Y. Li, C.L. Chen, T. Klose, V.J. Watts, C.W. Dessauer, and J.J.G. Tesmer. (2023). Isoform Specific Regulation of Adenylyl Cyclase 5 by Gβγ. bioRxiv. 37205557
Yosten, G.L., L.J. Redlinger, and W.K. Samson. (2012). Evidence for an interaction of neuronostatin with the orphan G protein-coupled receptor, GPR107. Am. J. Physiol. Regul Integr Comp Physiol 303: R941-949. 22933024
Yuan, S., H.C. Chan, H. Vogel, S. Filipek, R.C. Stevens, and K. Palczewski. (2016). The Molecular Mechanism of P2Y1 Receptor Activation. Angew Chem Int Ed Engl. [Epub: Ahead of Print] 27460867
Yuan, S., Z. Hu, S. Filipek, and H. Vogel. (2015). W246(6.48) opens a gate for a continuous intrinsic water pathway during activation of the adenosine A2A receptor. Angew Chem Int Ed Engl 54: 556-559. 25403323
Zhang, D.L., Y.J. Sun, M.L. Ma, Y.J. Wang, H. Lin, R.R. Li, Z.L. Liang, Y. Gao, Z. Yang, D.F. He, A. Lin, H. Mo, Y.J. Lu, M.J. Li, W. Kong, K.Y. Chung, F. Yi, J.Y. Li, Y.Y. Qin, J. Li, A.R.B. Thomsen, A.W. Kahsai, Z.J. Chen, Z.G. Xu, M. Liu, D. Li, X. Yu, and J.P. Sun. (2018). Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility. Elife 7:. 29393851
Zhang, H., A. Qiao, D. Yang, L. Yang, A. Dai, C. de Graaf, S. Reedtz-Runge, V. Dharmarajan, H. Zhang, G.W. Han, T.D. Grant, R.G. Sierra, U. Weierstall, G. Nelson, W. Liu, Y. Wu, L. Ma, X. Cai, G. Lin, X. Wu, Z. Geng, Y. Dong, G. Song, P.R. Griffin, J. Lau, V. Cherezov, H. Yang, M.A. Hanson, R.C. Stevens, Q. Zhao, H. Jiang, M.W. Wang, and B. Wu. (2017). Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546: 259-264. 28514451
Zhang, J., K. Zhang, Z.G. Gao, S. Paoletta, D. Zhang, G.W. Han, T. Li, L. Ma, W. Zhang, C.E. Müller, H. Yang, H. Jiang, V. Cherezov, V. Katritch, K.A. Jacobson, R.C. Stevens, B. Wu, and Q. Zhao. (2014). Agonist-bound structure of the human P2Y12 receptor. Nature 509: 119-122. 24784220
Zhang, K., H. Wu, N. Hoppe, A. Manglik, and Y. Cheng. (2022). Fusion protein strategies for cryo-EM study of G protein-coupled receptors. Nat Commun 13: 4366. 35902590
Zhang, K., J. Zhang, Z.G. Gao, D. Zhang, L. Zhu, G.W. Han, S.M. Moss, S. Paoletta, E. Kiselev, W. Lu, G. Fenalti, W. Zhang, C.E. Müller, H. Yang, H. Jiang, V. Cherezov, V. Katritch, K.A. Jacobson, R.C. Stevens, B. Wu, and Q. Zhao. (2014). Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509: 115-118. 24670650
Zhang, L., A.Y. Shih, X.V. Yang, C. Kuei, J. Wu, X. Deng, N.S. Mani, T. Mirzadegan, S. Sun, T.W. Lovenberg, and C. Liu. (2012). Identification of structural motifs critical for epstein-barr virus-induced molecule 2 function and homology modeling of the ligand docking site. Mol Pharmacol 82: 1094-1103. 22930711
Zhang, W., Z. Zhang, Y. Zhang, and A.P. Naren. (2017). CFTR-NHERF2-LPA₂ Complex in the Airway and Gut Epithelia. Int J Mol Sci 18:. 28869532
Zhang, Y., M.E. Devries, and J. Skolnick. (2006). Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2: e13. 16485037
Zhang, Z.Y., H.H. Bai, Z. Guo, H.L. Li, Y.T. He, X.L. Duan, Z.W. Suo, X. Yang, Y.X. He, and X.D. Hu. (2019). mGluR5/ERK signaling regulated the phosphorylation and function of glycine receptor α1ins subunit in spinal dorsal horn of mice. PLoS Biol 17: e3000371. 31433808
Zhao, L., F. Wei, X. He, A. Dai, D. Yang, H. Jiang, L. Wen, and X. Cheng. (2023). Identification of a carbohydrate recognition motif of purinergic receptors. Elife 12:. 37955640
Zhao, L.H., S. Ma, I. Sutkeviciute, D.D. Shen, X.E. Zhou, P.W. de Waal, C.Y. Li, Y. Kang, L.J. Clark, F.G. Jean-Alphonse, A.D. White, D. Yang, A. Dai, X. Cai, J. Chen, C. Li, Y. Jiang, T. Watanabe, T.J. Gardella, K. Melcher, M.W. Wang, J.P. Vilardaga, H.E. Xu, and Y. Zhang. (2019). Structure and dynamics of the active human parathyroid hormone receptor-1. Science 364: 148-153. 30975883
Zheng, Z., Z. Qiu, X. Xiong, A. Nie, W. Zhou, H. Qiu, H. Zhao, H. Wu, and J. Guo. (2023). Co-activation of NMDAR and mGluRs controls protein nanoparticle-induced osmotic pressure in neurotoxic edema. Biomed Pharmacother 169: 115917. [Epub: Ahead of Print] 38006617
Zhou, C., D. Dhall, N.N. Nissen, C.R. Chen, and R. Yu. (2009). Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor. Pancreas 38: 941-946. 19657311
Zhou, C., X. Dai, Y. Chen, Y. Shen, S. Lei, T. Xiao, T. Bartfai, J. Ding, and M.W. Wang. (2016). G protein-coupled receptor GPR160 is associated with apoptosis and cell cycle arrest of prostate cancer cells. Oncotarget 7: 12823-12839. 26871479
Zhu, S., M. Zhang, J.E. Davis, W.H. Wu, K. Surrao, H. Wang, and G. Wu. (2015). A single mutation in helix 8 enhances the angiotensin II type 1a receptor transport and signaling. Cell Signal 27: 2371-2379. 26342563
Zou, L., X. Wang, L. Jiang, S. Wang, X. Xiong, H. Yang, W. Gao, M. Gong, C.A. Hu, and Y. Yin. (2017). Molecular cloning, characterization and expression analysis of Frizzled 6 in the small intestine of pigs (Sus scrofa). PLoS One 12: e0179421. 28614361