TCDB is operated by the Saier Lab Bioinformatics Group

1.B.17 The Outer Membrane Factor (OMF) Family

Proteins of the OMF family (Li et al., 2001; Wong et al., 2001) function in conjunction with a primary cytoplasmic membrane transporter of the MFS (TC #2.A.1) (Pao et al., 1998; Wang et al. 2020), the ABC superfamily (TC #3.A.1) (Saurin et al., 1999), the RND superfamily (TC #2.A.6) (Tseng et al., 1999) and the ArAT family (TC #2.A.85) (Harley and Saier, 2000) as well as a membrane fusion protein (MFP; TC #8.A.1) (Dinh et al., 1994). The complex thus formed allows transport (export) of various solutes (heavy metal cations; drugs, oligosaccharides, proteins, etc.) across the two envelopes of the Gram-negative bacterial cell envelope in a single energy-coupled step. The OMF proteins probably form homotrimeric 12 stranded β-barrel-type pores in the outer membrane through which the solutes pumped out of the cytoplasm or cytoplasmic membrane pass in response to the energy-coupled export process catalyzed by the cytoplasmic membrane permease. In one case, the complex of primary transporter, MFP and OMF forms transiently in response to substrate binding (Létoffé et al., 1996). In another case involving AcrA (RND superfamily; TC#s 2.A.6.2.2;  8.A.1.6.1) and TolC (1.B.17.1.1), the interaction appears to be substrate independent (Husain et al., 2004).

The Serratia marcescens hemophore is secreted by a type I (ABC) secretion system consisting of three proteins: a membrane ABC protein, an adaptor protein, and the TolC-like outer membrane factor (Cescau et al., 2007). Assembly of these proteins is induced by substrate binding to the ABC protein. A hemophore mutant lacking the last 14 C-terminal amino acids is not secreted but rather interacts with the ABC protein and promotes a stable multiprotein complex. Strains expressing the transporter and the mutant protein are sensitive to detergents (e.g., sodium dodecyl sulfate [SDS]). TolC is trapped in the transporter, jammed by the truncated substrate, and therefore is not present at sufficient concentrations to allow the efflux pumps to expel detergents. Using an SDS sensitivity assay, the hemophore proved to interact with the ABC protein via two non-overlapping sites. The C-terminal peptide, which functions as an intramolecular signal sequence in the complete substrate, may have intermolecular activity and trigger complex dissociation (Cescau et al., 2007).

The crystal structure of E. coli TolC has been solved to 2.1 Å resolution (Koronakis et al., 1997, 2000), and the VceC homologue of Vibrio cholerae has been solved to 1.8 Å resolution (Federici et al., 2005). Three TolC protomers form a continuous, solvent-accessible conduit, a channel tunnel over 140 Å long that spans both the outer membrane (as 12 β-strands, 4 each per protomer) and the periplasmic space (as 12 α-helices, 6 continuous, 6 discontinuous, 4 each protomer). The α-helices are continuous with the β-strands. The periplasmic end of the tunnel is sealed by sets of coiled helices that might untwist upon contact with the primary permease to open the channel (Andersen et al., 2001; Koronakis et al., 2001). 3-d structures of sequential open states in a symmetrical opening transition of the TolC of E. coli exit duct have been identified (Pei et al., 2011).

The OMFs exhibit a preudosymmetrical structure due to the presence of two internally duplicated segments. Thus, the outer membrane β-barrel is assembled from the three protomers with each one contributing 4 β-strands. Each strand is between 10 and 13 residues long. The strands both curve and twist, yielding a superhelical structure, but the channel is wide open and fully accessible to solvent. The possibility of channel closure due to conformational mobility has not been excluded (Koronakis et al., 2000). The results clearly suggest that the OMF (and not the MFP) is largely responsible for the formation of both the trans-outer membrane and trans-periplasmic channels.

OMF family members are found in most classes of proteobacteria, in cyanobacteria, spirochetes, and in species of Deinococcus, Aquafex and Porphyromonas. The proteins are of 347-541 aas in length and are exported to the outer membrane via the general secretory pathway (GSP; TC#3.A.5).

A two-receptor model for colicin E1 (ColE1) translocation across the outer membrane of E. coli has been proposed (Masi et al., 2007). ColE1 initially binds to the vitamin B12 receptor BtuB and then translocates through the TolC channel-tunnel, presumably in a mostly unfolded state. In the early events in the import of ColE1, cleavage of colicin requires the presence of the receptor BtuB and the protease OmpT, but not that of TolC. Strains expressing OmpT cleaved ColE1 at K84 and K95 in the N-terminal translocation domain, leading to the removal of the TolQA box, which is essential for ColE1's cytotoxicity. Thus, OmpT degrades colicin at the cell surface to protect sensitive E. coli cells. Secondary binding of ColE1 to TolC depends on primary binding to BtuB, and alterations to residues in the TolC channel can interfere with the translocation of ColE1 but not binding of ColE1 to TolC (Masi et al., 2007).

References associated with 1.B.17 family:

Andersen, C., C. Hughes and V. Koronakis (2001). Protein export and drug efflux through bacterial channel-tunnels. Curr. Opin. Cell Biol. 13: 412-416. 11454445
Bhat, S., X. Zhu, R.P. Patel, R. Orlando, and L.J. Shimkets. (2011). Identification and localization of Myxococcus xanthus porins and lipoproteins. PLoS One 6: e27475. 22132103
Binet, R., S. Létoffé, J.M. Ghigo, P. Delepelaire and C. Wandersman (1997). Protein secretion by Gram-negative bacterial ABC exporters–a review. Gene 192: 7-11. 9224868
Bleuel, C., C. Grosse, N. Taudte, J. Scherer, D. Wesenberg, G.J. Krauss, D.H. Nies, and G. Grass. (2005). TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. J. Bacteriol. 187: 6701-6707. 16166532
Cescau, S., L. Debarbieux, and C.J. Wandersman. (2007). Probing the in vivo dynamics of type I protein secretion complex association through sensitivity to detergents. Bacteriol. 189: 1496-1504. 17158678
Cosme, A.M., A. Becker, M.R. Santos, L.A. Sharypova, P.M. Santos, and L.M. Moreira. (2008). The outer membrane protein TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial resistance, and symbiosis. Mol. Plant Microbe Interact. 21: 947-957. 18533835
Crosby, J.A. and S.C. Kachlany. (2007). TdeA, a TolC-like protein required for toxin and drug export in Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 388: 83-92. 17116373
Dinh, T., I.T. Paulsen and M.H. Saier, Jr. (1994). A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of Gram-negative bacteria. J. Bacteriol. 176: 3825-3831. 8021163
Federici, L., D. Du, F. Walas, H. Matsumura, J. Fernandez-Recio, K.S. McKeegan, M.I. Borges-Walmsley, B.F. Luisi, and A.R. Walmsley. (2005). The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 Å resolution. J. Biol. Chem. 280: 15307-15314. 15684414
Gimmestad M., M. Steigedal, H. Ertesvag, S. Moreno, B.E. Christensen, G. Espin, and S. Valla. (2006). Identification and characterization of an Azotobacter vinelandii Type I secretion system responsible for export of the AlgE-Type Mannuronan C-5-Epimerase. J. of Bacteriol. 188(15):5551-5560. 16855245
Guan, H.H., M. Yoshimura, P. Chuankhayan, C.C. Lin, N.C. Chen, M.C. Yang, A. Ismail, H.K. Fun, and C.J. Chen. (2015). Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism. Sci Rep 5: 16441. 26563565
Gupta, A., K. Matsui, J.-F. Lo and S. Silver (1999). Molecular basis for resistance to silver cations in Salmonella. Nature Med. 5: 183-188. 9930866
Hahn, A., M. Stevanovic, O. Mirus, and E. Schleiff. (2012). The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J. Biol. Chem. 287: 41126-41138. 23071120
Harley, K.T. and M.H. Saier, Jr. (2000). A novel ubiquitous family of putative efflux transporters. J. Mol. Microbiol. Biotechnol. 2: 195-198. 10939244
Hernández-Mendoza, A., N. Nava, O. Santana, C. Abreu-Goodger, A. Tovar, and C. Quinto. (2007). Diminished redundancy of outer membrane factor proteins in rhizobiales: a nodT homolog is essential for free-living Rhizobium etli. J. Mol. Microbiol. Biotechnol. 13: 22-34. 17693710
Husain, F., M. Humbard, and R. Misra. (2004). Interaction between the TolC and AcrA proteins of a multidrug efflux system of Escherichia coli. J. Bacteriol. 186: 8533-8536. 15576805
Iyer, R., S.H. Moussa, R. Tommasi, and A.A. Miller. (2019). Role of the Klebsiella pneumoniae TolC porin in antibiotic efflux. Res. Microbiol. 170: 112-116. 30468763
Koronakis, V., A. Sharff, E. Koronakis, B. Luisi, and C. Hughes. (2000). Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405: 914-919. 10879525
Koronakis, V., C. Andersen and C. Hughes (2001). Channel-tunnels. Curr. Opin. Struct. Biol. 11: 403-407. 11495730
Koronakis, V., J. Li, E. Koronakis and K. Stauffer (1997). Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals. Mol. Microbiol. 23: 617-626. 9044294
Lei HT., Bolla JR., Bishop NR., Su CC. and Yu EW. (2014). Crystal structures of CusC review conformational changes accompanying folding and transmembrane channel formation. J Mol Biol. 426(2):403-11. 24099674
Létoffé, S., P. Delepelaire and C. Wandersman (1996). Protein secretion in Gram-negative bacteria: assembly of the three components of ABC protein-mediated exporters is ordered and promoted by substrate binding. EMBO J. 15: 5804-5811. 8918458
Li, X.Z. and K. Poole (2001). Mutational analysis of the OprM outer membrane component of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol. 183: 12-27. 11114896
Masi, M., P. Vuong, M. Humbard, K. Malone, and R. Misra. (2007). Initial steps of colicin E1 import across the outer membrane of Escherichia coli. J. Bacteriol. 189: 2667-2676. 17277071
Munson, G.P., D.L. Lam, F.W. Outten and T.V. O'Halloran (2000). Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol. 182: 5864-5871. 11004187
Paulsen, I.T., J.H. Park, P.S. Choi and M.H. Saier, Jr. (1997). A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol. Lett. 156: 1-8. 9368353
Paulsen, I.T., M.H. Brown and R.A. Skurray (1996). Proton-dependent multidrug efflux systems. Microbiol. Revs. 60: 575-608. 8987357
Pei, X.Y., P. Hinchliffe, M.F. Symmons, E. Koronakis, R. Benz, C. Hughes, and V. Koronakis. (2011). Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. Proc. Natl. Acad. Sci. USA 108: 2112-2117. 21245342
Polleichtner, G., C. Anderson. (2006). The channel-tunnel HI1462 of Haemophilus influenzae reveals differences to Escherichia coli TolC. Microbiology 152: 1639-1647. 16735727
Sulavik, M.C., C. Houseweart, C. Cramer, N. Jiwani, N. Murgolo, J. Greene, B. DiDomenico, K.J. Shaw, G.H. Miller, R. Hare, and G. Shimer. (2001). Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45: 1126-1136. 11257026
Tseng, T.-T., K.S. Gratwick, J. Kollman, D. Park, D.H. Nies, A. Goffeau and M.H. Saier, Jr. (1999). The RND permease superfamily: an ancient, ubiquitous and diverse familly that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1: 107-125. 10941792
Wang, S.C., P. Davejan, K.J. Hendargo, I. Javadi-Razaz, A. Chou, D.C. Yee, F. Ghazi, K.J.K. Lam, A.M. Conn, A. Madrigal, A. Medrano-Soto, and M.H. Saier, Jr. (2020). Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes. Biochim. Biophys. Acta. Biomembr 1862: 183277. 32205149
Wong, K.K., F.S. Brinkman, R.S. Benz and R.E. Hancock (2001). Evaluation of a structural model of Pseudomonas aeruginosa outer membrane protein OprM, an efflux component involved in intrinsic antibiotic resistance. J. Bacteriol. 183: 367-374. 11114937