TCDB is operated by the Saier Lab Bioinformatics Group

1.B.22 The Outer Bacterial Membrane Secretin (Secretin) Family

The Secretin family consists of a group of Gram-negative bacterial outer membrane proteins that form multimeric pores through which macromolecules, usually proteins, but also filamentous phage can be secreted (Bitter et al., 1998; Cornelis et al., 1998; Hu et al., 1998; Korotkov et al. 2011). These proteins form homomultimeric ring structures, with large central pores (inner diameters of ~5 nm). The pores are plugged, and consequently conductance through secretin pores is minimal. Two secretins, PilQ of Neisseria meningitidis, and PulD of Klebsiella oxytoca are dodecamers with 12 or 14 identical subunits arranged in a ring (Collins et al., 2001, 2003; Linderoth et al., 1997). Secretin phylogeny has been studied by Nguyen et al. (2000) and Clock et al. (2008).  At least some secretins are constitutively in a partially open state (Disconzi et al. 2014).

Secretins are large proteins (420-750 amino acyl residues) consisting of two domains: an N-terminal periplasmic domain (the first 280 residues of XcpQ) and a C-terminal 'homology' domain that is embedded in the outer membrane (residues 283-568 in XcpQ). The C-terminal 'homology' domains of secretins are exclusively responsible for channel formation (Brok et al., 1999) but also includes the central disc and the plug (Chami et al., 2005). The C-domain penetrates both the peptidoglycan on the periplasmic side and the lipopolysaccharide and capsule layers on the cell surface (Chami et al., 2005). A C-terminal S-domain interacts with pilotin, a protein that facilitates secretin targeting to the outer membrane. Secretin subunits, containing multiple domains, interact with numerous other proteins, including secretion-system partner proteins and exoproteins. Features common to all secretins include a cylindrical arrangement of 12-15 subunits, a large periplasmic vestibule with a wide opening at one end and a periplasmic gate at the other (Korotkov et al., 2011).

Secretins function in type II protein secretion (TC #3.5; McLaughlin et al. 2012) (e.g., PulD of Klebsiella oxytoca), type III protein secretion (TC #3.6) (e.g., the hypersensitivity response secretin (HrpH) of Pseudomonas syringiae and the invasion protein secretin (InvG) of Salmonella typhimurium), competence (competence protein E (ComE) of Haemophilus influenzae), fimbrial protein export and assembly (e.g., the fimbrial assembly protein (PilQ) of Pseudomonas aeruginosa), phage assembly (e.g., the gene IV protein of bacteriophage f1), and filamentous phage secretion (Linderoth et al., 1997; Martinez et al., 1998; Nguyen et al., 2000). In Vibrio cholerae, the secretin of the type III secretion system, EpsD, which exports cholera toxin, also exports the filamentous phage, CTXQ, the genome of which encodes cholera toxin (Davis et al., 2000; Marciano et al., 1999). Filamentous phage are secreted and assembled with coat proteins simultaneously. The enteropathogenic E. coli secretin, BfpB, exports pilin subunits and several EPEC proteins, and renders cells sensitive to the antibiotic, vancomycin (Schmidt et al., 2001). Secretins are also found in TC Family 9.A.47 (The Tight Adherens (Pilus) Biogenesis Apparatus)). 

The PilQ DNA competence secretin complex (3.A.11.1.3) is 15 nm wide and 34 nm long and consists of a stable 'cone' and 'cup' five ring structure with a large central channel (Burkhardt et al., 2011). The individual rings are formed by conserved domains of alternating α-helices and β-sheets. The PilQ complex spans the entire cell periphery of T. thermophilus, consistent with the hypothesis that PilQ accommodates a PilA4 comprising pseudopilus, mediating DNA transport across the outer membrane and periplasmic space in a single-step process (Burkhardt et al., 2011).

References associated with 1.B.22 family:

Assalkhou, R., S. Balasingham, R.F. Collins, S.A. Frye, T. Davidsen, A.V. Benam, M. Bjørås, J.P. Derrick, and T. Tønjum. (2007). The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology 153: 1593-1603. 17464074
Bitter, W., M. Koster, M. Latijnhouwers, H. de Cock, and J. Tommassen. (1998). Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol. Microbiol. 27: 209-219. 9466268
Brok, R., P. Van Gelder, M. Winterhalter, U. Ziese, A.J. Koster, H. de Cock, M. Koster, J. Tommassen, and W. Bitter. (1999). The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. J. Mol. Biol. 294: 1169-1179. 10600375
Chami, M., Guilvout, I., Gregorini, M., Remigy, H.W., Muller, S.A., Valerio, M., Engel, A., Pugsley, A.P., and Bayan, N. (2005). Structural insights into the secretin PulD and its trypsin-resistant core. J. Biol. Chem. 280: 37732-37741. 16129681
Clock, S.A., P.J. Planet, B.A. Perez, and D.H. Figurski. (2008). Outer membrane components of the Tad (tight adherence) secreton of Aggregatibacter actinomycetemcomitans. J. Bacteriol. 190: 980-990. 18055598
Collins, R.F., L. Davidsen, J.P. Derrick, R.C. Ford, and T. Tønjum. (2001). Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183: 3825-3832. 11395444
Collins, R.F., R.C. Ford, A. Kitmitto, R.O. Olsen, T. Tønjum, and J.P. Derrick. (2003). Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-stain transmission electron microscopy. J. Bacteriol. 185: 2611-2617. 12670986
Cornelis, G.R., A. Boland, A.P. Boyd, C. Geuijen, M. Iriarte, C. Neyt, M.-P. Sory, and I. Stainier. (1998). The virulence plasmid of Yersinia, an antihost genome. Microbiol. Mol. Biol. Rev. 62: 1315-1352. 9841674
Davis, B.M., E.H. Lawson, M. Sandkvist, A. Ali, S. Sozhamannan, and M. Waldor. (2000). Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXφ. Science 288: 333-335. 10764646
Disconzi, E., I. Guilvout, M. Chami, M. Masi, G.H. Huysmans, A.P. Pugsley, and N. Bayan. (2014). Bacterial secretins form constitutively open pores akin to general porins. J. Bacteriol. 196: 121-128. 24142256
Hu, N.-T., M.-N. Hung, D.C. Chen, and R.-T. Tsai. (1998). Insertion mutagenesis of XpsD, an outer-membrane protein involved in extracellular protein secretion in Xanthomonas campestris pv. campestris. Microbiology 144: 1479-1486. 9639918
Korotkov, K.V., J.R. Delarosa, and W.G. Hol. (2013). A dodecameric ring-like structure of the N0 domain of the type II secretin from enterotoxigenic Escherichia coli. J Struct Biol 183: 354-362. 23820381
Korotkov, K.V., T. Gonen, and W.G. Hol. (2011). Secretins: dynamic channels for protein transport across membranes. Trends. Biochem. Sci. 36: 433-443. 21565514
Lieberman, J.A., C.D. Petro, S. Thomas, A. Yang, and M.S. Donnenberg. (2015). Type IV Pilus Secretins Have Extracellular C Termini. MBio 6:. 25805731
Linderoth, N.A., M.N. Simon, and M. Russel. (1997). The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science. 278: 1635-1638. 9374466
Marciano, D.K., M. Russel, and S.M. Simon. (1999). An aqueous channel for filamentous phage export. Science 284: 1516-1519. 10348737
Martínez, A., P. Ostrovsky, and D.N. Nunn. (1998). Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion. Mol. Microbiol. 28: 1235-1246. 9680212
McLaughlin, L.S., R.J. Haft, and K.T. Forest. (2012). Structural insights into the Type II secretion nanomachine. Curr. Opin. Struct. Biol. 22: 208-216. 22425326
Nguyen, L., I.T. Paulsen, J. Tchieu, C.J. Hueck, and M.H. Saier, Jr. (2000). Phylogenetic analyses of the constituents of Type III protein secretion systems. J. Mol. Microbiol. Biotechnol. 2: 125-144. 10939240
Schmidt, S.A., D. Bieber, S.W. Ramer, J. Hwang, C.-Y. Wu, and G. Schoolnik. (2001). Structure-function analysis of BfpB, a secretin-like protein encoded by the bundle-forming-pilus operon of enteropathogenic Escherichia coli. J. Bacteriol. 183: 4848-4859. 11466288
Sun, D., X. Zhang, L. Wang, M. Prudhomme, Z. Xie, B. Martin, and J.P. Claverys. (2009). Transforming DNA uptake gene orthologs do not mediate spontaneous plasmid transformation in Escherichia coli. J. Bacteriol. 191: 713-719. 19011021
Tarry, M., M. Jääskeläinen, A. Paino, H. Tuominen, R. Ihalin, and M. Högbom. (2011). The extra-membranous domains of the competence protein HofQ show DNA binding, flexibility and a shared fold with type I KH domains. J. Mol. Biol. 409: 642-653. 21530539
Thanassi, D.G. (2002). Ushers and secretins: channels for the section of folded proteins across the bacterial outer membrane. J. Mol. Micobiol. Biotechnol. 4: 11-20. 11763968
Trindade, M.B., V. Job, C. Contreras-Martel, V. Pelicic, and A. Dessen. (2008). Structure of a widely conserved type IV pilus biogenesis factor that affects the stability of secretin multimers. J. Mol. Biol. 378: 1031-1039. 18433773
Tønjum, T., D.A. Caugant, S.A. Dunham, and M. Koomey. (1998). Structure and function of repetitive sequence elements associated with a highly polymorphic domain of the Neisseria meningitidis PilQ protein. Mol. Microbiol. 29: 111-124. 9701807
Wall, D., P.E. Kolenbrander, and D. Kaiser. (1999). The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J. Bacteriol. 181: 24-33. 9864308
Yan, Z., M. Yin, D. Xu, Y. Zhu, and X. Li. (2017). Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol 24: 177-183. 28067918