TCDB is operated by the Saier Lab Bioinformatics Group

8.A.140.  The Lymphoid-restricted Membrane Protein (LRMP) Family 

Ion channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells (see TC#s 1.A.1.5.10 and 11). Peters et al. 2020 showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to endogenous expression of auxiliary proteins. They reported the discovery of a family of ER transmembrane proteins that associate with and modulate HCN4. The lymphoid-restricted membrane protein (LRMP, Jaw1) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG, Mrvi1, and Jaw1L) are homologous proteins with small ER luminal domains and large cytoplasmic domains. Despite their homology, LRMP and IRAG have distinct effects on HCN4. LRMP is a loss-of-function modulator that inhibits the canonical depolarizing shift in the voltage-dependence of HCN4 in response to the binding of cAMP. In contrast, IRAG causes a gain of HCN4 function by depolarizing the basal voltage dependence in the absence of cAMP. The mechanisms of action of LRMP and IRAG are independent of trafficking and cAMP binding, and they are specific to the HCN4 isoform.  IRAG is highly expressed in the mouse sinoatrial node where computer modeling predicts that its presence increases HCN4 current. Thus, important roles for LRMP and IRAG in the regulation of cellular excitability are proposed (Peters et al. 2020).

References associated with 8.A.140 family:

Peters, C.H., M.E. Myers, J. Juchno, C. Haimbaugh, H. Bichraoui, Y. Du, J.R. Bankston, L.A. Walker, and C. Proenza. (2020). Isoform-specific regulation of HCN4 channels by a family of endoplasmic reticulum proteins. Proc. Natl. Acad. Sci. USA 117: 18079-18090. 32647060